Forgot password?
 Register account
View 2914|Reply 6

[不等式] 简单不等式问题

[Copy link]

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

reny Posted 2013-11-19 19:39 |Read mode
已知$a+b+c>0,ab+bc+ca>0,abc>0,$求证$a>0,b>0,c>0.$
有木有很巧妙的证法?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-11-19 19:49
一般情况也证成立,证明见:www.irgoc.org/viewtopic.php?p=708#p708

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

 Author| reny Posted 2013-11-19 20:23
回复 2# kuing
谢xie!

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-11-19 20:51
反证法也快的,假设ab<=0,c<=0,那么由ab+c(a+b)>0得到a+b<0,这与a+b+c>0矛盾

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-20 20:35
反证法也快的,假设ab
realnumber 发表于 2013-11-19 20:51
修改为:反证法也快的,假设c<0,则ab<0,那么由ab+c(a+b)>0得到a+b<0,这与a+b+c>0矛盾

1

Threads

20

Posts

122

Credits

Credits
122

Show all posts

aipotuo Posted 2014-2-6 13:00
令$f(x)=(x+a)(x+b)(x+c)$,
则$f(x)=x^3+(a+b+c)x^2+(ab+bc+ca)x+abc$.
所以当$x\geq 0$时,$f(x)>0$恒成立.
所以$-a,-b,-c<0$.

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2014-2-6 13:05
回复 6# aipotuo
二楼链接里就是这个方法
I am majia of kuing

Mobile version|Discuz Math Forum

2025-6-6 03:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit