Forgot password
 Register account
View 2915|Reply 6

[不等式] 简单不等式问题

[Copy link]

19

Threads

25

Posts

0

Reputation

Show all posts

reny posted 2013-11-19 19:39 |Read mode
已知$a+b+c>0,ab+bc+ca>0,abc>0,$求证$a>0,b>0,c>0.$
有木有很巧妙的证法?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-11-19 19:49
一般情况也证成立,证明见:www.irgoc.org/viewtopic.php?p=708#p708

19

Threads

25

Posts

0

Reputation

Show all posts

original poster reny posted 2013-11-19 20:23
回复 2# kuing
谢xie!

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2013-11-19 20:51
反证法也快的,假设ab<=0,c<=0,那么由ab+c(a+b)>0得到a+b<0,这与a+b+c>0矛盾

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-11-20 20:35
反证法也快的,假设ab
realnumber 发表于 2013-11-19 20:51
修改为:反证法也快的,假设c<0,则ab<0,那么由ab+c(a+b)>0得到a+b<0,这与a+b+c>0矛盾

1

Threads

20

Posts

0

Reputation

Show all posts

aipotuo posted 2014-2-6 13:00
令$f(x)=(x+a)(x+b)(x+c)$,
则$f(x)=x^3+(a+b+c)x^2+(ab+bc+ca)x+abc$.
所以当$x\geq 0$时,$f(x)>0$恒成立.
所以$-a,-b,-c<0$.

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2014-2-6 13:05
回复 6# aipotuo
二楼链接里就是这个方法
I am majia of kuing

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 08:07 GMT+8

Powered by Discuz!

Processed in 0.018875 seconds, 22 queries