Forgot password?
 Create new account
View 2780|Reply 8

[不等式] 简单不等式问题

[Copy link]

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

reny Posted at 2013-11-19 19:39:20 |Read mode
已知$a+b+c>0,ab+bc+ca>0,abc>0,$求证$a>0,b>0,c>0.$
有木有很巧妙的证法?

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-11-19 19:49:20
一般情况也证成立,证明见:www.irgoc.org/viewtopic.php?p=708#p708

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

 Author| reny Posted at 2013-11-19 20:23:19
回复 2# kuing
谢xie!

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-11-19 20:51:01
反证法也快的,假设ab<=0,c<=0,那么由ab+c(a+b)>0得到a+b<0,这与a+b+c>0矛盾

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-20 20:35:39
反证法也快的,假设ab
realnumber 发表于 2013-11-19 20:51

修改为:反证法也快的,假设c<0,则ab<0,那么由ab+c(a+b)>0得到a+b<0,这与a+b+c>0矛盾

2

Threads

21

Posts

131

Credits

Credits
131

Show all posts

aipotuo Posted at 2014-2-6 13:00:49
令$f(x)=(x+a)(x+b)(x+c)$,
则$f(x)=x^3+(a+b+c)x^2+(ab+bc+ca)x+abc$.
所以当$x\geq 0$时,$f(x)>0$恒成立.
所以$-a,-b,-c<0$.

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-2-6 13:05:31
回复 6# aipotuo
二楼链接里就是这个方法
I am majia of kuing

2

Threads

21

Posts

131

Credits

Credits
131

Show all posts

aipotuo Posted at 2014-2-6 14:35:41
回复 7# 爪机专用

捕获.JPG

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-6 15:29:58
回复 8# aipotuo

噢……原来那网站又挂了,不知啥时候挂的,之前还能看的……算了,不管了……

手机版Mobile version|Leisure Math Forum

2025-4-21 23:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list