找回密码
 快速注册
搜索
查看: 63|回复: 4

[函数] 正交多项式列,满足$f_{n-1}$的根穿插于$f_n$的根

[复制链接]

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2022-9-16 01:15 |阅读模式
Problems in Applied Mathematics, Chapter 17, page 526
Problem 81-2, by E. Deutsch (Polytechnic Institute of New York).
Let $f_1,f_2,⋯$ be a sequence of real, monic, orthogonal polynomials associated with a given distribution. It is known that $f_n(x)$ is of degree $n\ (n = 1, 2,⋯)$, $f_n(x)$ has only real, simple zeros and the zeros of $f_{n-1}(x)$ interlace strictly with those of $f_n(x)\ (n = 2, 3,⋯)$. Show that if $x_1< x_2 <⋯< x_n$ denote the zeros of $f_n(x)$, then the zeros of $f_{n-1}(x)\ (n≥3)$ are located in the open interval$$\left(x_{1}+\frac{\left(x_{2}-x_{1}\right) f_{n-1}\left(x_{1}\right)}{f_{n}^{\prime}\left(x_{1}\right)}, x_{n}-\frac{\left(x_{n}-x_{n-1}\right) f_{n-1}\left(x_{n}\right)}{f_{n}^{\prime}\left(x_{n}\right)}\right)$$

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-9-16 01:18
PROPOSITION. Let $P(x)=\prod_{k=1}^n\left(x-a_k\right)$ and $R(x)=\prod_{k=1}^{n-1}\left(x-b_k\right)$, where
\[
a_1<b_1<a_2<b_2<\cdots<a_{n-1}<b_{n-1}<a_n .\tag1
\]
Then
\[
b_{n-1}<a_n-\frac{\left(a_n-a_{n-1}\right) R\left(a_n\right)}{P^{\prime}\left(a_n\right)}\tag2
\]
and
\[
b_1>a_1+\frac{\left(a_2-a_1\right) R\left(a_1\right)}{P^{\prime}\left(a_1\right)}\tag3
\]
Proof. 由(1)
\[
\prod_{k=1}^{n-2}\left(a_n-b_k\right)<\prod_{k=1}^{n-2}\left(a_n-a_k\right),
\]

\[
\frac{R\left(a_n\right)}{a_n-b_{n-1}}<\frac{P^{\prime}\left(a_n\right)}{a_n-a_{n-1}}
\]
这等价于(2). 类似可证明(3).
Remark. 尽管在证明 (2) 和 (3) 时不需要 $P$ 和 $R$ 的正交性,但很容易看出,只要 $P$ 和 $R$ 是正交多项式,就满足 (1)。

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-9-16 01:29
hbghlyj 发表于 2022-9-15 18:18
只要 $P$ 和 $R$ 是正交多项式,就满足 (1)。


见Kerstin Jordaan, Properties of orthogonal polynomial, Lecture-1   Lecture-2   Lecture-3
Show that Roots of Orthogonal Polynomials are interlaced.
interlacing properties of zeros of orthogonal polynomials
Orthogonal Polynomials

Zeros of classical orthogonal polynomials
If $\left\{p_n(x)\right\}_{n=0}^{\infty}$ is a sequence of orthogonal polynomials on the interval $(a, b)$ with respect to the weight function $w(x)$, then the polynomial $p_n(x)$ has exactly $n$ real simple zeros in the interval $(a, b)$.

Since $\operatorname{deg}\left(p_n\right)=n$ the polynomial has at most $n$ real zeros.
Suppose that $p_n(x)$ has $m \leq n$ distinct real zeros $x_1, x_2, \ldots, x_m$ in $(a, b)$ of odd order (or multiplicity).
Then the polynomial
\[
p_n(x)\left(x-x_1\right)\left(x-x_2\right) \ldots\left(x-x_m\right)
\]
does not change sign on the interval $(a, b)$.
This implies that
\[
\int_a^b w(x) p_n(x)\left(x-x_1\right)\left(x-x_2\right) \ldots\left(x-x_m\right) d x \neq 0 .
\]
By orthogonality this integral equals zero if $m<n$.
Hence: $m=n$, which implies that $p_n(x)$ has $n$ distinct real zeros of odd order in $(a, b)$.

This proves that all $n$ zeros are distinct and simple (have order or multiplicity equal to one).

An important consequence of the recurrence relation, is the Christoffel-Darboux formula (See Assignment 1, Ex. 3).
Theorem
A sequence of orthogonal polynomials $\left\{p_n(x)\right\}_{n=0}^{\infty}$ satisfies
\[
\sum_{k=0}^n \frac{p_k(x) p_k(y)}{h_k}=\frac{k_n}{h_n k_{n+1}} \frac{p_{n+1}(x) p_n(y)-p_{n+1}(y) p_n(x)}{x-y}, n=0,1,2, \ldots\tag2
\]
and
\[
\sum_{k=0}^n \frac{\left\{p_k(x)\right\}^2}{h_k}=\frac{k_n}{h_n k_{n+1}}\left(p_{n+1}^{\prime}(x) p_n(x)-p_{n+1}(x) p_n^{\prime}(x)\right), n=0,1,2, \ldots\tag3
\]
(2) is called the Christoffel-Darboux formula and (3) its confluent form.
(3) yields another important property of zeros of orthogonal polynomials.

Interlacing of zeros
Theorem
If $\left\{p_n(x)\right\}_{n=0}^{\infty}$ is a sequence of orthogonal polynomial on the interval $(a, b)$ with respect to the weight function $w(x)$, then the zeros of $p_n(x)$ and $p_{n+1}(x)$ separate each other.
$f\left\{x_{n, k}\right\}_{k=1}^n$ and $\left\{x_{n+1, k}\right\}_{k=1}^{n+1}$ denote the consecutive zeros of $p_n(x)$ and $p_{n+1}(x)$ respectively, then we have
\[
a<x_{n+1,1}<x_{n, 1}<x_{n+1,2}<x_{n, 2}<\ldots<x_{n+1, n}<x_{n, n}<x_{n+1, n+1}<b .
\]
Proof
Note that
\[
h_n=\int_a^b w(x)\left\{p_n(x)\right\}^2 d x>0, n=0,1,2, \ldots
\]
This implies that
\[
\frac{k_n}{h_n k_{n+1}}\left(p_{n+1}^{\prime}(x) p_n(x)-p_{n+1}(x) p_n^{\prime}(x)\right)=\sum_{k=0}^n \frac{\left\{p_k(x)\right\}^2}{h_k}>0
\]
Hence
\[
\frac{k_n}{k_{n+1}}\left(p_{n+1}^{\prime}(x) p_n(x)-p_{n+1}(x) p_n^{\prime}(x)\right)>0
\]
Now suppose that $x_{n+1, k}$ and $x_{n+1, k+1}, k=1,2, \ldots, n$ are any two consecutive zeros of $p_{n+1}(x)$ with $x_{n+1, k}<x_{n+1, k+1}$.
Since all $n+1$ zeros of $p_{n+1}(x)$ are real and simple, it follows from Rolle's theorem that $p_{n+1}^{\prime}\left(x_{n+1, k}\right)$ and $p_{n+1}^{\prime}\left(x_{n+1, k+1}\right)$ have opposite signs.
Hence we have
\[
p_{n+1}\left(x_{n+1, k}\right)=0=p_{n+1}\left(x_{n+1, k+1}\right)\quad \text { and }\quad p_{n+1}^{\prime}\left(x_{n+1, k}\right) p_{n+1}^{\prime}\left(x_{n+1, k+1}\right)<0
\]
This implies that $p_n\left(x_{n+1, k}\right) p_n\left(x_{n+1, k+1}\right)<0$. Why?
It follows from the continuity of $p_n(x)$ that there should be at least one zero of $p_n(x)$ between $x_{n+1, k}$ and $x_{n+1, k+1}$
This holds for each pair of consecutive zeros of $p_{n+1}(x)$ so there is exactly one zero of $p_n(x)$ between $x_{n+1, k}$ and $x_{n+1, k+1}$.

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-9-16 02:06
hbghlyj 发表于 2022-9-15 18:29
This implies that $p_n\left(x_{n+1, k}\right) p_n\left(x_{n+1, k+1}\right)<0$.


Why?

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-1-6 06:46
Analytic theory of polynomials, Oxford University Press, page 200
Proposition 6.3.10
Let $(P_ν)_{ν\in\Bbb N_0}$ be any system of orthogonal polynomials. Then $P_ν$ and $P_{ν+1}$ have strictly interlacing zeros for all $ν> 1$.
Proof According to Theorem 1.4.4, a system of monic orthogonal polynomials satisfies a recurrence formula
$$
P_n(x)=\left(x-\alpha_n\right) P_{n-1}(x)-\beta_{n-1} P_{n-2}(x) \quad(n=1,2, \ldots),
$$
where $P_{-1}(x) \equiv 0, P_0(x) \equiv 1$, and $\beta_\nu>0$ for $\nu \in \mathbb{N}_0$. We want to show by induction on $\nu$ that the pair $P_\nu, P_{\nu+1}$ has strictly interlacing zeros.

For $\nu=1$, we employ the Hermite-Biehler theorem. Noting that a real shift of the argument is admissible, we consider
$$
f(z):=P_2\left(z+\alpha_1\right)+\mathrm{i} P_1\left(z+\alpha_1\right)=z^2+\left(\alpha_1-\alpha_2+\mathrm{i}\right) z-\beta_1 .
$$
Since $\beta_1>0$, the formulae of Viète readily imply that $f$ has its zeros in the open lower half-plane. Hence $P_1$ and $P_2$ have strictly interlacing zeros. The conclusion for $\nu$ follows from that for $\nu-1$ by using Lemma 6.3.9.

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 15:56

Powered by Discuz!

× 快速回复 返回顶部 返回列表