Forgot password
 Register account
View 166|Reply 2

[几何] 三角形内判断正误

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2022-9-17 22:56 |Read mode
判断正误:已知 △ABC 满足 tanAtanB=tan(A+B),则 {x|x=sinC}=(0,1)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-9-18 15:25
易证:若 `x`, `y\in(0,\pi)` 满足 `\tan x\tan y<0` 且 `\tan x+\tan y<0`,则 `x+y<\pi`。

记 `p=\tan A+\tan B`, `q=\tan A\tan B`,条件即为 `q=p/(1-q)`。

对于任意 `q<0` 都存在 `p` 满足 `p^2\geqslant4q` 且 `p=q(1-q)<0`,根据上述结论知相应的三角形存在,所以 `q` 可以取遍所有负数。

于是 `\sin C=\sqrt{\frac{\tan^2(A+B)}{1+\tan^2(A+B)}}=\sqrt{\frac{q^2}{1+q^2}}` 便可取遍 `(0,1)`。

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2022-9-18 22:50
kuing 发表于 2022-9-18 15:25
易证:若 `x`, `y\in(0,\pi)` 满足 `\tan x\tan y

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:56 GMT+8

Powered by Discuz!

Processed in 0.012195 seconds, 22 queries