Forgot password?
 Create new account
View 1995|Reply 1

[数论] (转)求所有正整数n,...是完全平方数

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-11-20 09:43:53 |Read mode
文武光华潘成华(101``````51)  09:34:23
求所有正整数n,使得$2^{n-1}n+1$是完全平方数.

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-11-20 11:31:31
回复 1# realnumber


首先当$n=1$时,这货等于$2$,显然没戏
当$n>1$时,显然那个东西是奇数,不妨设
\[2^{n-1}n+1=(2p+1)^2,p\in N^+\]
然后有
\[2^{n-3}n=p(p+1)\]
显然这里$p$和$p+1$里是一个奇数一个偶数,先设$p$为奇数好了
这样的话,必须有$p|n$,即$n=qp, q\in N^+$,因为$2^{n-3}$明摆着不会有奇数因子在里面
于是
\[2^{qp-3}q=p+1\]
\[p+1=2^{pq-3}q\ge 2^{pq-3}\ge 2^{p-3}\]
加上$p$为奇数,可得
\[p=1,3,5\]
\[2^{n-3}n=2,12,30\]
计算发现,以上通通没戏..........
令$p+1$为奇数
此时$p+1|n, n=q(p+1)$
\[2^{qp+q-3}q=p\]
\[p\ge 2^{pq+q-3}\ge 2^{p+1-3}\],加上$p$为偶数,得
\[p=2,4\]

\[2^{n-3}n=6,20\]
得$n=5$
这是唯一解了

手机版Mobile version|Leisure Math Forum

2025-4-21 19:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list