|
original poster
lrh2006
posted 2022-9-26 22:14
Last edited by hbghlyj 2025-3-21 05:48原谅我是个学渣
看到一个做法,觉得还是你写的漂亮
$x, y$ 为正实数,$\begin{aligned}[t]
& \therefore \frac{2 x+y}{2 x^2+y^2+18} \\
& =\frac{2 x+y}{\left(x^2+x^2+y^2\right)+18} \\
& \leqslant \frac{2 x+y}{\frac{(2 x+y)^2}{3}+18} \\
& =\frac{3}{(2 x+y)+\frac{54}{2 x+y}} \\
& \leqslant \frac{3}{2 \sqrt{(2 x+y) \cdot \frac{54}{2 x+y}}}=\frac{\sqrt{6}}{12},
\end{aligned}$ |
|