Forgot password
 Register account
View 237|Reply 8

[不等式] 分式的最值问题

[Copy link]

167

Threads

381

Posts

5

Reputation

Show all posts

lrh2006 posted 2022-9-26 20:56 |Read mode
若x,y为正实数,则$\frac{2x+y}{2x^2+y^2+18}$的最大值为(     )
老师们,这个题目可以用什么公式很快得出吗?要是没有高级的公式,怎么做呀?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-9-26 21:11
好久不见呀
\begin{align*}
\text{原式}&=\frac{2x+y}{\frac13(2+1)(2x^2+y^2)+18}\\
&\leqslant \frac{2x+y}{\frac13(2x+y)^2+18}\\
&\leqslant \frac{2x+y}{2\sqrt{\frac13(2x+y)^2\cdot18}}\\
&=\frac1{2\sqrt6}.
\end{align*}

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2022-9-26 22:00
kuing 发表于 2022-9-26 21:11
好久不见呀
\begin{align*}
\text{原式}&=\frac{2x+y}{\frac13(2+1)(2x^2+y^2)+18}\\
是啊,好久不见,甚是想念

这是用了柯西吗?哎,为什么我想不到这样去凑

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-9-26 22:04
lrh2006 发表于 2022-9-26 22:00
是啊,好久不见,甚是想念

这是用了柯西吗?哎,为什么我想不到这样去凑 ...
是柯西,想法很简单呀,就是将分母变出分子那块。

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2022-9-26 22:14
Last edited by hbghlyj 2025-3-21 05:48
kuing 发表于 2022-9-26 22:04
是柯西,想法很简单呀,就是将分母变出分子那块。
原谅我是个学渣

看到一个做法,觉得还是你写的漂亮
$x, y$ 为正实数,$\begin{aligned}[t]
& \therefore \frac{2 x+y}{2 x^2+y^2+18} \\
& =\frac{2 x+y}{\left(x^2+x^2+y^2\right)+18} \\
& \leqslant \frac{2 x+y}{\frac{(2 x+y)^2}{3}+18} \\
& =\frac{3}{(2 x+y)+\frac{54}{2 x+y}} \\
& \leqslant \frac{3}{2 \sqrt{(2 x+y) \cdot \frac{54}{2 x+y}}}=\frac{\sqrt{6}}{12},
\end{aligned}$

107

Threads

224

Posts

1

Reputation

Show all posts

facebooker posted 2022-9-28 03:56
Last edited by hbghlyj 2025-3-21 05:48$$\frac{2x+y}{2x^{2}+y^{2}+18}=\frac{2x+y}{\frac{\left(2x\right)^{2}}{2}+\frac{y^{2}}{1}+18}\le\frac{2x+y}{\frac{\left(2x+y\right)^{2}}{2+1}+18}\le\frac{2x+y}{2\cdot\left(2x+y\right)\sqrt{6}}=\frac{\sqrt{6}}{12}$$
$$\frac{2x+y}{2x^{2}+y^{2}+18}=\frac{2\cdot3k\cos\theta+3\sqrt{2}k\sin\theta}{\left(k^{2}+1\right)18}\le\frac{\sqrt{6}k}{6\left(k^{2}+1\right)}\le\frac{\sqrt{6}}{12}$$

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-9-28 10:39
动分子也行,由$\frac {a+b+c}3\leqslant \sqrt{\frac {a^2+b^2+c^2}3}$有
\[\frac{x+x+y}3\leqslant \sqrt{\frac{x^2+x^2+y^2}3}\]

\[2x+y\leqslant \sqrt 3\sqrt {2x^2+y^2}\]
于是
\begin{align*}
\frac{2x+y}{2x^2+y^2+18}&\leqslant\frac{\sqrt {3(2x^2+y^2)}}{2x^2+y^2+18}\\[1ex]
&=\frac{\sqrt 3}{\sqrt{2x^2+y^2}+\frac{18}{\sqrt{2x^2+y^2}}}\\[1ex]
&\leqslant \frac {\sqrt 3}{2\sqrt {18}}\\[1ex]
&=\frac{\sqrt 6}{12}.
\end{align*}
取等号时,$x=y=\sqrt 6$.
isee=freeMaths@知乎

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2022-9-28 11:27
isee 发表于 2022-9-28 10:39
动分子也行,由$\frac {a+b+c}3\leqslant \sqrt{\frac {a^2+b^2+c^2}3}$有
\[\frac{x+x+y}3\leqslant \sqrt ...
嗯,反正就是将两块变成一块的道理
这名字我喜欢

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2022-10-2 07:44 from mobile
这种题其实很简单,令2x+y=t,不用拼凑,试试看,两分钟搞定。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:15 GMT+8

Powered by Discuz!

Processed in 0.014467 seconds, 24 queries