Forgot password?
 Register account
View 175|Reply 0

[分析/方程] $\ln(1-x)$泰勒级数

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-10-6 19:23 |Read mode
Brilliant wiki - Interchanging the summation and integral sign
First, use the taylor series of $\ln(1-x)$:
\[\int_0^1 \dfrac{\ln(1-x)}{x} dx=\int_0^1 \sum_{n=1}^\infty \dfrac{x^{n-1}}{n} dx.\]
积分的结果写的是$\frac{π^2}6$, 但是当$0<x<1$时, $\ln(1-x)<0$, 所以integrand是负的. 离谱啊.
看了一下,应该是$\displaystyle\frac{\ln(1-x)}x=-\sum_{n=1}^∞\frac{x^{n-1}}n$吧, 缺少负号?
所以, 答案应该是\[\int_0^1 \dfrac{\ln(1-x)}{x} dx=-\frac{π^2}6\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 05:22 GMT+8

Powered by Discuz!

Processed in 0.020879 second(s), 21 queries

× Quick Reply To Top Edit