Forgot password?
 Create new account
View 147|Reply 0

$\ln(1-x)$泰勒级数

[Copy link]

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

hbghlyj Posted at 2022-10-6 19:23:28 |Read mode
Brilliant wiki - Interchanging the summation and integral sign
First, use the taylor series of $\ln(1-x)$:
\[\int_0^1 \dfrac{\ln(1-x)}{x} dx=\int_0^1 \sum_{n=1}^\infty \dfrac{x^{n-1}}{n} dx.\]

积分的结果写的是$\frac{π^2}6$, 但是当$0<x<1$时, $\ln(1-x)<0$, 所以integrand是负的. 离谱啊.
看了一下,应该是$\displaystyle\frac{\ln(1-x)}x=-\sum_{n=1}^∞\frac{x^{n-1}}n$吧, 缺少负号?
所以, 答案应该是\[\int_0^1 \dfrac{\ln(1-x)}{x} dx=-\frac{π^2}6\]

手机版Mobile version|Leisure Math Forum

2025-4-22 01:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list