Forgot password?
 Register account
View 2452|Reply 9

[数列] 数列不等式

[Copy link]

186

Threads

206

Posts

2150

Credits

Credits
2150

Show all posts

guanmo1 Posted 2013-11-20 11:45 |Read mode
如图
数列不等式.png

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-11-20 16:48
mark一下

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2013-11-20 18:08
$\displaystyle a_n=(\frac{1+\sqrt{1-4\sin^2\theta\cos^2\theta}}{2})^n+(\frac{1-\sqrt{1-4\sin^2\theta\cos^2\theta}}{2})^n$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2013-11-20 18:44
$a_n=\sin^{2n}\theta+\cos^{2n}\theta$

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2013-11-20 19:04
$\displaystyle a_n'(\theta)=2n\sin^{2n-1}\theta\cos\theta-2n\cos^{2n-1}\theta\sin\theta=0,\theta=\frac{\pi}{4}$
$\displaystyle a_n(\frac{\pi}{4})=2^{-n}+2^{-n}=\frac{1}{2^{n-1}},a_n\ge\frac{1}{2^{n-1}}$

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-20 20:00
$a_n=\sin^{2n}\theta+\cos^{2n}\theta$
tommywong 发表于 2013-11-20 18:44
特征方程。
妙不可言,不明其妙,不着一字,各释其妙!

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2013-11-20 20:02
回复 6# 其妙

对,3楼就是用特征方程,4楼是化简后的。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-20 20:17
$\displaystyle a_n'(\theta)=2n\sin^{2n-1}\theta\cos\theta-2n\cos^{2n-1}\theta\sin\theta=0,\theta=$ ...
tommywong 发表于 2013-11-20 19:04
权方和

186

Threads

206

Posts

2150

Credits

Credits
2150

Show all posts

 Author| guanmo1 Posted 2013-11-21 10:49
右边的不等式怎么搞,麻烦高手详细点解答。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-21 13:16
回复 9# guanmo1
设$x=\sin^2\theta$,则右边不等式等价于一个关于$x$的不等式,求导可得

Mobile version|Discuz Math Forum

2025-6-6 01:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit