Forgot password?
 Register account
View 346|Reply 2

[几何] 反映椭圆的对称性的一个证明题

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2022-10-8 23:12 |Read mode
已知点$P$为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上的任意一点,弦$PA,PB$与横轴的交点$M(-t,0),N(t,0)$相异于椭圆的左右顶点。若椭圆在点$A,B$处的切线交于点$Q$,证明:点$P,Q$的横坐标互为相反数。
此题直接计算很麻烦,大佬的金手伸伸,解解我的难处。
QQ图片20221008231059.png

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2022-11-20 11:40
设左右的交点为$M,N$,延长$ PO $交椭圆于$P'$,再作$PR\px x$轴交椭圆于$ R $,有$ P',R  $的横坐标都与$ P $成相反数,故只需$ P',R,Q $共线.
因为$ PN,PM,PO,PR $为调和线束,则$ ARBP' $为调和四边形,于是有$ P',R,Q $共线.

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2022-11-20 11:41
设左右的交点为$M,N$,延长$ PO $交椭圆于$P'$,再作$PR\px x$轴交椭圆于$ R $,有$ P',R  $的横坐标都与$ P $成相反数,故只需$ P',R,Q $共线.
因为$ PN,PM,PO,PR $为调和线束,则$ ARBP' $为调和四边形,于是有$ P',R,Q $共线.
,,.png

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 很有用!

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit