Forgot password?
 Register account
View 254|Reply 1

[组合] 平分奖金

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-10-14 18:19 |Read mode
Hw8Sol.pdf
Problem 59
有 $n+1$ 人参与一场比赛。每个人获胜的概率为 $p$ 且相互独立。获胜者将平分 1 个单位的总奖金。让 $A$ 表示一名指定的玩家,让 $X$ 表示 $A$ 收到的奖金。
(a) 计算玩家分享的总奖金的期望。
设 $Y$ 为玩家分享的总奖金。如果没有人获胜,则 $Y=0$。如果至少有一人获胜,则 $Y=1$。没有获胜者的概率是$(1-p)^{n+1}$。因此,玩家分享的总奖金的期望为
\[
E[Y]=0P\{Y=0\}+1P\{Y=1\}=P\{Y=1\}=1-(1-p)^{n+1} \text{。}
\](b) 证明 $\displaystyle E[X]=\frac{1-(1-p)^{n+1}}{n+1}$
标记玩家为 1 到 $n+1$ 并让 $Y_i$ 表示玩家$i$的奖金。
玩家分享的总奖金$Y=\sum_{i=1}^{n+1} Y_i$。由(a),$E[Y]=1-(1-p)^{n+1}$。
由于玩家独立获胜且概率相同,$E\left[Y_i\right]$ 独立于 $i$。特别地,$E\left[Y_i\right]=E[X]$ 是 $A$ 的奖金的期望。所以
\[
1-(1-p)^{n+1}=E[Y]=\sum_{i=1}^{n+1} E\left[Y_i\right]=(n+1) E[X]
\]
所以
\[
E[X]=\frac{1-(1-p)^{n+1}}{n+1}
\]
(c) Compute $E[X]$ by conditioning on whether $A$ is a winner, and conclude that\[E\left[(1+B)^{-1}\right]=\frac{1-(1-p)^{n+1}}{(n+1) p}\]when $B$ is a binomial random variable with parameters $n$ and $p$.
Let $I=1$ if $A$ wins and $I=0$ otherwise. Then $E[X]=E[E[X \mid I]]$. If $I=0$, then $E[X \mid I]=0$ since $A$ can only get a prize if $A$ wins. If $I=1$, then $E[X \mid I]=(1+B)^{-1}$,
where $B$ denotes the number of winners excluding $I$. Note that $B$ is a binomial random variable with parameters $n$ and $p$. Therefore
\[
\begin{aligned}
E[X] &=E[E[X \mid I]] \\
&=E[X \mid I=0] \cdot P\{I=0\}+E[X \mid I=1] \cdot P\{I=1\} \\
&=0+E\left[(1+B)^{-1}\right] \cdot p \\
&=E\left[(1+B)^{-1}\right] \cdot p
\end{aligned}
\]
So using part (b), we get
\[
E\left[(1+B)^{-1}\right]=\frac{E[X]}{p}=\frac{1-(1-p)^{n+1}}{(n+1) p} .
\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-10-14 18:51
(c)写成恒等式:$$\sum _{k=0}^n \frac{\binom{n}{k} p^k(1-p)^{n-k}}{k+1}=\frac{1-(1-p)^{n+1}}{(n+1) p}$$

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit