Forgot password?
 Register account
View 250|Reply 2

[几何] 三角形面积关系

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2022-10-18 08:29 |Read mode
如图,设点$P$是$\triangle ABC$中$\angle A$内部任意一点,过点$P$的直线$l$与$AB$(或其延长线)交于点$M$,与$AC$(或其延长线)交于点$N$,且$BM=kAM,CN=tAN$,则:
(1)$S_{\triangle ABC}=(k+1)S_{\triangle APC}+(t+1)S_{\triangle APB}$;
(2)$S_{\triangle BPC}=kS_{\triangle APC}+tS_{\triangle APB}$.
20221018082054.png

请问如下证明上述命题?
显然证明了(1),则(2)是必然的!

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-10-18 10:52
\[\frac{S_{\Delta APC}}{S_{\Delta APN}}=\frac{AC}{AN}=t+1\]
\[\frac{S_{\Delta APB}}{S_{\Delta APM}}=\frac{AB}{AM}=k+1\]
故此
\[S_{\Delta AMN}=S_{\Delta APN}+S_{\Delta APM}=\frac{S_{\Delta APC}}{t+1}+\frac{S_{\Delta APM}}{k+1}\]

\[\frac{S_{\Delta AMN}}{S_{\Delta ABC}}=\frac{AM}{AB}\cdot\frac{AN}{AC}=\frac{1}{(k+1)(t+1)}\]
于是
\[S_{\Delta ABC}=(k+1)(t+1)S_{\Delta AMN}=(k+1)S_{\Delta APC}+(t+1)S_{\Delta APM}\]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-10-18 17:06
战巡 发表于 2022-10-18 10:52
\[\frac{S_{\Delta APC}}{S_{\Delta APN}}=\frac{AC}{AN}=t+1\]
\[\frac{S_{\Delta APB}}{S_{\Delta APM}}= ...
谢谢!
不知能不能用向量中的“奔驰定理”来证呢?

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit