Forgot password?
 Create new account
View 130|Reply 2

[不等式] 关于置换把哪些元素提前的问题

[Copy link]

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

hbghlyj Posted at 2022-10-21 18:17:28 |Read mode
$S=\{1,2,\cdots,n\}$, $f$是从$S$到$S$的双射,
将$\{i\in S:i\ge a\wedge i\le b\}$记为$S[a,b]$,
  [即$S[a,b]=[a,n]\cap[1,b]\cap S$.
  当$a\le b$时, $S[a,b]=[a,b]\cap S$; 当$a>b$时, $S[a,b]=\emptyset$.]

证明: $$\bigcup_{i=1}^nS[i,f(i)]=\bigcup_{i=1}^nS[f(i),i]=S$$
例子: n=5, f(1)=3, f(2)=2, f(3)=4, f(4)=5, f(5)=1, 则
S[1,f(1)]={1, 2, 3},
S[2,f(2)]={2},
S[3,f(3)]={3, 4},
S[4,f(4)]={4, 5},
S[5,f(5)]=$\emptyset$,
它们的并集是S={1,2,3,4,5}.
S[f(1),1]=$\emptyset$,
S[f(2),2]=$\emptyset$,
S[f(3),3]=$\emptyset$,
S[f(4),4]=$\emptyset$,
S[f(5),5]={1,2,3,4,5},
它们的并集也是S={1,2,3,4,5}.
取RandomSample验证:
n = 5;
S = RandomSample[Range[n]];
T = {};
For[i = 1, i <= n, i++, AppendTo[T, Range[i, S[[i]]]]]
Union[Flatten[T]] == Range[n]
输出True
n = 5;
S = RandomSample[Range[n]];
T = {};
For[i = 1, i <= n, i++, AppendTo[T, Range[S[[i]], i]]]
Union[Flatten[T]] == Range[n]
输出True

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-23 02:31:20

Comment

选[不等式]真的合适嘛?  Posted at 2022-10-23 20:51

手机版Mobile version|Leisure Math Forum

2025-4-22 01:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list