Djoković 1963 GENERALIZATIONS OF HLAWKA'S INEQUALITY
Dmgomir Ž. Đoković, Beograd
1. Introduction Let $E$ be complex pre-Hilbert (unitary) space. We shall denote the norm of $a \in E$ by $|a|$. The following identity is due to E. Hlawka [1]:
\[
\begin{aligned}
&\left(\left|a_1\right|+\left|a_2\right|+\left|a_3\right|-\left|a_2+a_3\right|-\left|a_3+a_1\right|-\left|a_1+a_2\right|+\right.\\
+&\left.\left|a_1+a_2+a_3\right|\right) \times\left(\left|a_1\right|+\left|a_2\right|+\left|a_3\right|+\left|a_1+a_2+a_3\right|\right)=\\
=&\left(\left|a_2\right|+\left|a_3\right|-\left|a_2+a_3\right|\right)\left(\left|a_1\right|-\left|a_2+a_3\right|+\left|a_1+a_2+a_3\right|\right)+\\
+&\left(\left|a_3\right|+\left|a_1\right|-\left|a_3+a_1\right|\right)\left(\left|a_2\right|-\left|a_3+a_1\right|+\left|a_1+a_2+a_3\right|\right)+\\
+&\left(\left|a_1\right|+\left|a_2\right|-\left|a_1+a_2\right|\right)\left(a_3|-| a_1+a_2|+| a_1+a_2+a_3|\right)
\end{aligned}
\]
where $a_1, a_2, a_3$ are arbitrary elements of $E$. From this it follows that
\[
\left|a_1\right|+\left|a_2\right|+\left|a_3\right| -\left|a_2+a_3\right|-\left|a_3+a_1\right|-\left|a_1+a_2\right|+\left|a_1+a_2+a_3\right| \geq 0 .
\]
This is Hlawka's inequality.
|