Forgot password?
 Register account
View 220|Reply 4

求下列级数的洛朗级数

[Copy link]

41

Threads

60

Posts

563

Credits

Credits
563

Show all posts

baxiannv Posted 2022-10-23 10:23 From mobile phone |Read mode
Last edited by hbghlyj 2025-3-9 05:29求函数 $\frac{1}{z(z-i)}$ 在 $1<|z-\mathrm{i}|<+\infty$ 内的洛朗展开式.

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-10-23 15:47
写成部分分式就行了吧
\[\frac{1}{z(z-i)}=-\frac{i}{z-i}+\frac{1}{1-i(z-i)}
=-\frac{i}{z-i}+\sum_{k=0}^{\infty}(i(z-i))^k\]

3158

Threads

7923

Posts

610K

Credits

Credits
64213
QQ

Show all posts

hbghlyj Posted 2022-10-23 16:44
abababa 发表于 2022-10-23 08:47
写成部分分式就行了吧
\[\frac{1}{z(z-i)}=-\frac{i}{z-i}+\frac{1}{1-i(z-i)}
=-\frac{i}{z-i}+\sum_{k=0} ...
$\frac{1}{1-i(z-i)}
=\sum_{k=0}^{\infty}(i(z-i))^k$收敛$⇔\abs{i(z-i)}<1⇔|z-i|<1$
但是题目要求是$|z-i|>1$

3158

Threads

7923

Posts

610K

Credits

Credits
64213
QQ

Show all posts

hbghlyj Posted 2022-10-23 16:48
\begin{align*}\frac1{z(z-i)}&=\frac{i}{z}-\frac{i}{z-i}\\
&=-i(z-i)^{-1}+\frac{i}{(z-i)+i}\\
&=-i(z-i)^{-1}+\frac{i(z-i)^{-1}}{1-\bigl(-i(z-i)^{-1}\bigr)}\\
&=-i(z-i)^{-1}+\sum_{n=1}^∞(-i)^{n+2}(z-i)^{-n}\\
&=\sum_{n=2}^∞(-i)^{n+2}(z-i)^{-n}
\end{align*}
收敛条件是$\abs{z-i}>1$.

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-10-25 11:07
hbghlyj 发表于 2022-10-23 16:44
$\frac{1}{1-i(z-i)}
=\sum_{k=0}^{\infty}(i(z-i))^k$收敛$⇔\abs{i(z-i)}
是的,我做错了,取倒数才行。

Mobile version|Discuz Math Forum

2025-6-6 06:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit