Forgot password
 Register account
View 155|Reply 4

求下列级数的洛朗级数

[Copy link]

41

Threads

60

Posts

0

Reputation

Show all posts

baxiannv posted 2022-10-23 10:23 from mobile |Read mode
Last edited by hbghlyj 2025-3-9 05:29求函数 $\frac{1}{z(z-i)}$ 在 $1<|z-\mathrm{i}|<+\infty$ 内的洛朗展开式.

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2022-10-23 15:47
写成部分分式就行了吧
\[\frac{1}{z(z-i)}=-\frac{i}{z-i}+\frac{1}{1-i(z-i)}
=-\frac{i}{z-i}+\sum_{k=0}^{\infty}(i(z-i))^k\]

3222

Threads

7840

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-10-23 16:44
abababa 发表于 2022-10-23 08:47
写成部分分式就行了吧
\[\frac{1}{z(z-i)}=-\frac{i}{z-i}+\frac{1}{1-i(z-i)}
=-\frac{i}{z-i}+\sum_{k=0} ...
$\frac{1}{1-i(z-i)}
=\sum_{k=0}^{\infty}(i(z-i))^k$收敛$⇔\abs{i(z-i)}<1⇔|z-i|<1$
但是题目要求是$|z-i|>1$

3222

Threads

7840

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-10-23 16:48
\begin{align*}\frac1{z(z-i)}&=\frac{i}{z}-\frac{i}{z-i}\\
&=-i(z-i)^{-1}+\frac{i}{(z-i)+i}\\
&=-i(z-i)^{-1}+\frac{i(z-i)^{-1}}{1-\bigl(-i(z-i)^{-1}\bigr)}\\
&=-i(z-i)^{-1}+\sum_{n=1}^∞(-i)^{n+2}(z-i)^{-n}\\
&=\sum_{n=2}^∞(-i)^{n+2}(z-i)^{-n}
\end{align*}
收敛条件是$\abs{z-i}>1$.

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2022-10-25 11:07
hbghlyj 发表于 2022-10-23 16:44
$\frac{1}{1-i(z-i)}
=\sum_{k=0}^{\infty}(i(z-i))^k$收敛$⇔\abs{i(z-i)}
是的,我做错了,取倒数才行。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 16:17 GMT+8

Powered by Discuz!

Processed in 0.013034 seconds, 23 queries