Forgot password?
 Register account
View 126|Reply 0

$L^\infty[0,1]$没有可数的拓扑基

[Copy link]

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2022-10-24 03:48 |Read mode
Last edited by hbghlyj 2023-6-9 11:16基 (拓撲學)
math.stackexchange.com/questions/2893487
对任意$t\in (0,1)$, 定义$f_t=\chi_{[0,t]}$.
则对任意不同的$s,t\in(0,1)$有$\|f_t-f_s\|_\infty=1$.
所以$L^\infty$中的开球$B(f_t,1/2),\;t\in (0,1)$两两不相交.
因为$B(f_t,1/2)$是开集,所以包含一个$L^\infty[0,1]$的拓扑基的元素,所以$L^\infty[0,1]$的拓扑基都是不可数的.

Mobile version|Discuz Math Forum

2025-6-6 13:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit