Forgot password
 Register account
View 129|Reply 0

整数正交阵是置换阵

[Copy link]

3222

Threads

7841

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-10-26 03:33 |Read mode
Rational orthogonal matrices
Everybody knows that an integral orthogonal matrix is a signed permutation matrix, so there are exactly $2^nn!$ such matrices in $O(n)$.
证明:
对$n$归纳. 当$n=1$时只有一个正交阵$[1]$. 设命题对$n-1$成立.
设$b_{ij}\in\Bbb Z,B=[b_{ij}]\in O(n)$.
每个行/列向量的模长为1,所以每行/列恰好有一个是$\pm1$,而其他所有的都是0.
设$b_{i1}=1$,则第1行、第$i$行的其他元素为0.
把$B$第1行、第$i$行去掉,得到的子阵为正交阵,由归纳假设,它是置换阵,所以$B$是置换阵.
反过来,置换阵显然都是正交阵.
证毕.

Related threads

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 22:12 GMT+8

Powered by Discuz!

Processed in 0.012524 seconds, 24 queries