Forgot password?
 Create new account
View 130|Reply 3

$I⊗A-A⊗I$的秩

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-10-30 00:07:57 |Read mode
Kronecker product
代数基础 | Kronecker积
Chapter 13Kronecker Products
相关帖子: 可交换的线性变换
$A$是$2×1$矩阵
  1. A = Array[Subscript[a, ##] &, {2, 1}];
  2. B = KroneckerProduct[IdentityMatrix[2], A] - KroneckerProduct[A, IdentityMatrix[2]]
  3. MatrixRank[B]
Copy the Code

得到\begin{array}l
B=
\begin{pmatrix}
0 & 0 \\
a_{2,1} & -a_{1,1} \\
-a_{2,1} & a_{1,1} \\
0 & 0 \\
\end{pmatrix}\\
\operatorname{rank}B=1
\end{array}
$A$是$2×2$矩阵
  1. A = Array[Subscript[a, ##] &, {2, 2}];
  2. B = KroneckerProduct[IdentityMatrix[2], A] - KroneckerProduct[A, IdentityMatrix[2]]
  3. MatrixRank[B]
Copy the Code

得到\begin{array}l
B=\begin{pmatrix}
0 & a_{1,2} & -a_{1,2} & 0 \\
a_{2,1} & a_{2,2}-a_{1,1} & 0 & -a_{1,2} \\
-a_{2,1} & 0 & a_{1,1}-a_{2,2} & a_{1,2} \\
0 & -a_{2,1} & a_{2,1} & 0 \\
\end{pmatrix}
\\
\operatorname{rank}B=2
\end{array}
$A$是$2×3$矩阵
  1. A = Array[Subscript[a, ##] &, {2, 3}];
  2. B = KroneckerProduct[IdentityMatrix[2], A] - KroneckerProduct[A, IdentityMatrix[2]]
  3. MatrixRank[B]
Copy the Code
得到\begin{array}l
B=
\begin{pmatrix}
0 & a_{1,2} & a_{1,3}-a_{1,2} & 0 & -a_{1,3} & 0 \\
a_{2,1} & a_{2,2}-a_{1,1} & a_{2,3} & -a_{1,2} & 0 & -a_{1,3} \\
-a_{2,1} & 0 & -a_{2,2} & a_{1,1} & a_{1,2}-a_{2,3} & a_{1,3} \\
0 & -a_{2,1} & 0 & a_{2,1}-a_{2,2} & a_{2,2} & 0 \\
\end{pmatrix}\\
\operatorname{rank}B=4
\end{array}
$A$是$3×3$矩阵
  1. A = Array[Subscript[a, ##] &, {2, 3}];
  2. B = KroneckerProduct[IdentityMatrix[2], A] - KroneckerProduct[A, IdentityMatrix[2]]
  3. MatrixRank[B]
Copy the Code
得到\begin{array}l
B=
\begin{pmatrix}
0 & a_{1,2} & a_{1,3}-a_{1,2} & 0 & -a_{1,3} & 0 \\
a_{2,1} & a_{2,2}-a_{1,1} & a_{2,3} & -a_{1,2} & 0 & -a_{1,3} \\
a_{3,1}-a_{2,1} & a_{3,2} & a_{3,3}-a_{2,2} & 0 & -a_{2,3} & 0 \\
0 & -a_{2,1} & 0 & a_{1,1}-a_{2,2} & a_{1,2} & a_{1,3}-a_{2,3} \\
-a_{3,1} & 0 & -a_{3,2} & a_{2,1} & a_{2,2}-a_{3,3} & a_{2,3} \\
0 & -a_{3,1} & 0 & a_{3,1}-a_{3,2} & a_{3,2} & 0 \\
\end{pmatrix}\\
\operatorname{rank}B=6
\end{array}

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-30 00:15:40
本层节省宽度, 从而避免横向滚动条.(当屏幕宽度>1150px时适用)

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-30 00:22:28
对于所有$n×n(n≥3)$矩阵$A$,求证$\operatorname{rank}(I⊗A-A⊗I)$的最大值为$2n$
$n$rank
36
48
510
612

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-10-31 18:37:14
hbghlyj 发表于 2022-10-30 00:22
对于所有$n×n(n≥3)$矩阵$A$,求证$\operatorname{rank}(I⊗A-A⊗I)$的最大值为$2n$
考察 $A$ 的特征向量 $v_i$ ($Av_i=\lambda_i v_i$), 则 $$
(A\otimes I-I\otimes A)(v_i\otimes v_j)=(\lambda_i -\lambda_j) (v_i\otimes v_j).
$$
因此 $A$ 的零空间至少为 $n$ 维度. 例如取 $A=\mathrm{diag}(1,\ldots, n)$, 则 $A\otimes I-I\otimes A$ 还是对角矩阵, 对角线上有且仅有 $n$ 个 $0$.

其实凡事先考虑特殊情况嘛, 若 $P^{-1}A P=J$, 那么有相似变换
$$
(P^{-1}\otimes P^{-1})(A\otimes I-I\otimes A)(P\otimes P)= J\otimes I-I\otimes J.
$$
剩下慢慢玩就行了.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list