Forgot password
 Register account
View 175|Reply 5

[数列] 递推式的求法

[Copy link]

62

Threads

175

Posts

0

Reputation

Show all posts

nttz posted 2022-10-30 13:03 |Read mode
Last edited by nttz 2022-10-30 16:59已知数列 满足 $ (n-2)a_n - (n-1)a_{n-1}  + 1 =0(n>=2)$,求$a_n$

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2022-10-30 13:55
令 n=1 得 $-a_1+1=0$ 得 $a_1=1$
令 n=2 得 $a_1+1=0$ 得 $a_1=-1$
矛盾
这名字我喜欢

62

Threads

175

Posts

0

Reputation

Show all posts

original poster nttz posted 2022-10-30 16:58
色k 发表于 2022-10-30 13:55
令 n=1 得 $-a_1+1=0$ 得 $a_1=1$
令 n=2 得 $a_1+1=0$ 得 $a_1=-1$
矛盾
n>=2

62

Threads

175

Posts

0

Reputation

Show all posts

original poster nttz posted 2022-10-30 17:00
色k 发表于 2022-10-30 13:55
令 n=1 得 $-a_1+1=0$ 得 $a_1=1$
令 n=2 得 $a_1+1=0$ 得 $a_1=-1$
矛盾
抱歉,打错了

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2022-10-30 18:01
因为是线性的,猜解的形式是$a_n=c_1n+c_2$,代入后可知$c_2=1-c_1$,于是$a_n=c_1n+(1-c_1)$一定是一个解。不知道有没有其它解。

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2022-10-30 18:37 from mobile
修改之后,除以(n-1)(n-2)再裂项即可,爪机就不写过程了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:07 GMT+8

Powered by Discuz!

Processed in 0.011725 seconds, 23 queries