Forgot password?
 Register account
View 356|Reply 6

有同解的两个无理等式

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2022-10-30 22:10 |Read mode
Last edited by 青青子衿 2022-11-17 22:22\begin{gather*}
\frac{\sqrt{1+x^{3}}}{\left(x-y\right)\left(x-z\right)}+\frac{\sqrt{1+y^{3}}}{\left(y-x\right)\left(y-z\right)}+\frac{\sqrt{1+z^{3}}}{\left(z-x\right)\left(z-y\right)}=0\\
\\
\Updownarrow\,?\\
\frac{\sqrt{1+x^{3}}}{\left(1+x\right)\left(x-y\right)\left(x-z\right)}+\frac{\sqrt{1+y^{3}}}{\left(1+y\right)\left(y-x\right)\left(y-z\right)}+\frac{\sqrt{1+z^{3}}}{\left(1+z\right)\left(z-x\right)\left(z-y\right)}=\frac{1}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}
\end{gather*}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-10-30 23:04
Last edited by hbghlyj 2022-11-16 15:19
第一个式子代入$z=0$:第二个式子代入$z=0$:
$$\frac{\sqrt{x^3+1}}{x (x-y)}+\frac{\sqrt{y^3+1}}{y (y-x)}+\frac{1}{x y}=0$$$$\frac{\sqrt{x^3+1}}{x (x+1) (x-y)}+\frac{\sqrt{y^3+1}}{y (y+1) (y-x)}+\frac{1}{x y}=\frac{1}{\sqrt{(x+1) (y+1)}}$$
Screenshot 2022-10-25 at 00-06-29 format short后结果仍然是分数,想要保留4位小数 .png Screenshot 2022-10-25 at 00-06-29 format short后结果仍然是分数,想要保留4位小数 .png

可见, 第一个式子的图象包含在第二个式子中. 所以第一个式子能推出第二个式子, 第二个式子不能推出第一个式子.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-10-30 23:18
Last edited by hbghlyj 2022-11-16 15:31$f(x)=\sqrt{1+x^3}$. 当$x>0$时$f''(x)>0$,由这帖有:
当$x_1,x_2,x_3>0$时,
$$\frac{f(x_1)}{(x_1-x_2)(x_1-x_3)}+\frac{f(x_2)}{(x_2-x_3)(x_2-x_1)}+\frac{f(x_3)}{(x_3-x_1)(x_3-x_2)} >0$$


因此, 满足第一个式子的$x,y,z$不能全为正数

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-16 20:23
第一个式子$⇔\begin{vmatrix}
\sqrt{x^3+1} & \sqrt{y^3+1} & \sqrt{z^3+1} \\
x & y & z \\
1 & 1 & 1 \\
\end{vmatrix}=0$
存在常数$a,b$使$\sqrt{t^3+1}=at+b$的三个根为$x,y,z$.
所以$t^3+1-(at+b)^2=0$的三个根为$x,y,z$.
所以$(t-1)^3+1-(a(t-1)+b)^2=0$的三个根为$x+1,y+1,z+1$.
展开,$t^3+t \left(2 a^2-2 a b+3\right)+\left(-a^2-3\right) t^2-(a-b)^2=0$
所以它的所有根之积为$(a-b)^2$
所以$(x+1)(y+1)(z+1)=(a-b)^2$
设$f(t)=at+b$, 观察$\sqrt{t^3+1}$的图象可知, 当$f(-1)<0$时, 直线$f(t)$与$\sqrt{t^3+1}$最多有1个交点. 但是$\sqrt{t^3+1}=f(t)$有三个根$x,y,z$, 所以$f(-1)\ge0$, 即$-a+b\ge0$, 所以$\sqrt{(x+1)(y+1)(z+1)}=-a+b$ .png

将$\sqrt{x^3+1}=ax+b,\sqrt{y^3+1}=ay+b,\sqrt{z^3+1}=az+b,\sqrt{(x+1)(y+1)(z+1)}=-a+b$代入第二个式子\[\frac{\sqrt{1+x^{3}}}{\left(1+x\right)\left(x-y\right)\left(x-z\right)}+\frac{\sqrt{1+y^{3}}}{\left(1+y\right)\left(y-x\right)\left(y-z\right)}+\frac{\sqrt{1+z^{3}}}{\left(1+z\right)\left(z-x\right)\left(z-y\right)}-\frac{1}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\]
变为\begin{multline*}\frac{ax+b}{\left(1+x\right)\left(x-y\right)\left(x-z\right)}+\frac{ay+b}{\left(1+y\right)\left(y-x\right)\left(y-z\right)}+\frac{az+b}{\left(1+z\right)\left(z-x\right)\left(z-y\right)}-\frac{1}{-a+b}\\=\frac{(a-b)^2-(x+1)(y+1)(z+1)}{(x+1) (y+1) (z+1) (-a+b)}=0\end{multline*}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-16 22:55
...观察$\sqrt{t^3+1}$的图象可知, 当$f(-1)<0$时, 直线$f(t)$与$\sqrt{t^3+1}$最多有1个交点
这步如何严格论证呢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-16 22:59
存在常数$a,b$使$\sqrt{t^3+1}=at+b$的三个根为$x,y,z$.
这步漏了一种情况: 存在常数$a,b$使$0=at+b$的三个根为$x,y,z$.
但这是不可能的: 因为$0=at+b$只能有一个根.

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2022-11-18 11:21
Last edited by 青青子衿 2022-11-18 11:29
hbghlyj 发表于 2022-11-16 20:23
$\begin{vmatrix}
\sqrt{x^3+1} & \sqrt{y^3+1} & \sqrt{z^3+1} \\
x & y & z \\
1 & 1 & 1 \\
\end{vmatrix}=0$
\begin{align*}
S_{1}&=\frac{D_{1}}{(x-y) (x-z) (y-z)}\\
S_{2}&=\frac{D_{2}}{(x+1) (y+1) (z+1) (x-y) (x-z) (y-z)}
\end{align*}

\begin{align*}
D_1&=\begin{vmatrix}
x & 1 & \sqrt{x^3+1} \\
y & 1 & \sqrt{y^3+1} \\
z & 1 & \sqrt{z^3+1}
\end{vmatrix}\\
\\
D_2&=\begin{vmatrix}
(x+1)^2 & x+1 & \sqrt{x^3+1}-\sqrt{(x+1) (y+1) (z+1)} \\
(y+1)^2 & y+1 & \sqrt{y^3+1}-\sqrt{(x+1) (y+1) (z+1)} \\
(z+1)^2 & z+1 & \sqrt{z^3+1}-\sqrt{(x+1) (y+1) (z+1)} \\
\end{vmatrix}
\end{align*}

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit