|
第一个式子$⇔\begin{vmatrix}
\sqrt{x^3+1} & \sqrt{y^3+1} & \sqrt{z^3+1} \\
x & y & z \\
1 & 1 & 1 \\
\end{vmatrix}=0$
存在常数$a,b$使$\sqrt{t^3+1}=at+b$的三个根为$x,y,z$.
所以$t^3+1-(at+b)^2=0$的三个根为$x,y,z$.
所以$(t-1)^3+1-(a(t-1)+b)^2=0$的三个根为$x+1,y+1,z+1$.
展开,$t^3+t \left(2 a^2-2 a b+3\right)+\left(-a^2-3\right) t^2-(a-b)^2=0$
所以它的所有根之积为$(a-b)^2$
所以$(x+1)(y+1)(z+1)=(a-b)^2$
设$f(t)=at+b$, 观察$\sqrt{t^3+1}$的图象可知, 当$f(-1)<0$时, 直线$f(t)$与$\sqrt{t^3+1}$最多有1个交点. 但是$\sqrt{t^3+1}=f(t)$有三个根$x,y,z$, 所以$f(-1)\ge0$, 即$-a+b\ge0$, 所以$\sqrt{(x+1)(y+1)(z+1)}=-a+b$ |
|
将$\sqrt{x^3+1}=ax+b,\sqrt{y^3+1}=ay+b,\sqrt{z^3+1}=az+b,\sqrt{(x+1)(y+1)(z+1)}=-a+b$代入第二个式子\[\frac{\sqrt{1+x^{3}}}{\left(1+x\right)\left(x-y\right)\left(x-z\right)}+\frac{\sqrt{1+y^{3}}}{\left(1+y\right)\left(y-x\right)\left(y-z\right)}+\frac{\sqrt{1+z^{3}}}{\left(1+z\right)\left(z-x\right)\left(z-y\right)}-\frac{1}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\]
变为\begin{multline*}\frac{ax+b}{\left(1+x\right)\left(x-y\right)\left(x-z\right)}+\frac{ay+b}{\left(1+y\right)\left(y-x\right)\left(y-z\right)}+\frac{az+b}{\left(1+z\right)\left(z-x\right)\left(z-y\right)}-\frac{1}{-a+b}\\=\frac{(a-b)^2-(x+1)(y+1)(z+1)}{(x+1) (y+1) (z+1) (-a+b)}=0\end{multline*} |
|