|
In topological groups
Definition: For any neighborhood $U$ of the identity $0,$ there exist finitely many $x_1, \ldots, x_n \in X$ such that $S \subseteq \bigcup_{j=1}^n \left(x_j + U\right) := \left(x_1 + U\right) + \cdots + \left(x_n + U\right).$ 红色的公式似乎应该是$S \subseteq \bigcup_{j=1}^n \left(x_j + U\right) := \left(x_1 + U\right) ∪ \cdots ∪ \left(x_n + U\right).$ 吧? |
|