|
Author |
hbghlyj
Posted 2022-10-31 08:44
$\ker(A-4I)=\operatorname{span}\left\{\pmatrix{1\\-1}\right\}$
由$(A-4I)v=\pmatrix{1\\-1}$解得$v=\pmatrix{1\\0}$
所以$A$的Jordan标准型
\[A=\left(
\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
\end{array}
\right)\left(
\begin{array}{cc}
4 & 1 \\
0 & 4 \\
\end{array}
\right)\left(
\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
\end{array}
\right)^{-1}\]
而$J^2=0⇒(4I+J)^n=(4I)^n+n(4I)^{n-1}J=4^nI+4^{n-1}nJ$
所以
\[A^n=\left(
\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
\end{array}
\right)\left(
\begin{array}{cc}
4^n & 4^{n-1}n \\
0 & 4^n \\
\end{array}
\right)\left(
\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
\end{array}
\right)^{-1}=\left(
\begin{array}{cc}
4^{n-1} n+4^n & 4^{n-1} n \\
-4^{n-1} n & 4^n-4^{n-1} n \\
\end{array}
\right)\] |
|