|
拉馬努金和
拉馬努金和(Ramanujan's sum)常標示為 $c_q(n)$,為一個帶有兩正整數變數$q$以及$n$的函數,其定義如下:
\[c_q(n)= \sum_{a=1\atop \gcd(a,q)=1}^q e^{2 \pi i \tfrac{a}{q} n},\]
下面的式子源自於定義、歐拉公式$e^{ix}= \cos x + i \sin x$以及基本三角函數恆等式:
\begin{aligned}
c_1(n) &= 1 \\
c_2(n) &= \cos n\pi \\
c_3(n) &= 2\cos \tfrac23 n\pi \\
c_4(n) &= 2\cos \tfrac12 n\pi \\
c_5(n) &= 2\cos \tfrac25 n\pi + 2\cos \tfrac45 n\pi \\
c_6(n) &= 2\cos \tfrac13 n\pi \\
c_7(n) &= 2\cos \tfrac27 n\pi + 2\cos \tfrac47 n\pi + 2\cos \tfrac67 n\pi \\
c_8(n) &= 2\cos \tfrac14 n\pi + 2\cos \tfrac34 n\pi \\
c_9(n) &= 2\cos \tfrac29 n\pi + 2\cos \tfrac49 n\pi + 2\cos \tfrac89 n\pi \\
c_{10}(n)&= 2\cos \tfrac15 n\pi + 2\cos \tfrac35 n\pi \\
\end{aligned}等等(oeis.org/A000012, oeis.org/A033999, oeis.org/A099837, oeis.org/A176742,.., oeis.org/A100051, ...)。這些式子顯示出$c_q(n)$為實數。 |
|