Forgot password
 Register account
View 133|Reply 0

[分析/方程] 函数$f(z)=\exp (-\frac{1}{z^4})$是全纯的吗

[Copy link]

3156

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-11-2 09:37 |Read mode
math.stackexchange.com/questions/291233
math.stackexchange.com/questions/2402375
$\lim_{z\to z_{0}}\frac{f(z)-f(0)}{z-0}=\lim_{z\to z_{0}}\frac{\exp (-\frac{1}{z^4})}{z}$不存在.
  1. Limit[Exp[-1/z^4]/z, z -> 0, Direction -> 1]
  2. Limit[Exp[-1/z^4]/z, z -> 0, Direction -> -1]
  3. Limit[Exp[-1/z^4]/z, z -> 0, Direction -> I]
  4. Limit[Exp[-1/z^4]/z, z -> 0, Direction -> -I]
  5. Limit[Exp[-1/z^4]/z, z -> 0, Direction -> 1 + I]
Copy the Code
可以看到, 沿着实轴/虚轴的方向极限都是0(所以满足 Cauchy-Riemann 方程), 但1+i方向是∞. 所以$f$在0不可微.
实际上, 0是$f$的本性奇点(essential singularity).

如果 $u$ 和 $v$ 是可微的(作为函数 $\mathbb{R}^2 \to \mathbb{R}$)并且 $u$ 和 $v$ 在 $z$ 点满足 Cauchy-Riemann 方程,那么 $f$ 在 $z$ 处是复可微的。仅仅假设 $f$ 连续是不够的。
然而,如果我们假设 $f$ 在开集 $U$ 上是连续的,并且 $u$ 和 $v$ 在 $U$ 上处处满足 Cauchy-Riemann方程,那么 $f$ 实际上对 $U$ 是解析的,我们不用假设 $u$ 和 $v$ 是可微的,称为 Looman-Menchoff 定理

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-9 04:03 GMT+8

Powered by Discuz!

Processed in 0.033335 second(s), 21 queries