Forgot password
 Register account
View 154|Reply 0

[函数] 积的差商

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-11-3 05:34 |Read mode
Difference quotient 定义为 $\Delta f(x_1,x_2)=\frac{f(x_1)-f(x_2)}{x_1-x_2}$
两个函数之积的差商有以下公式.
\begin{align*}\Delta(fg)(x_1,x_2)&=\Delta f(x_1,x_2)g(x_1)+\Delta g(x_1,x_2)f(x_2)\\
&=\Delta f(x_1,x_2)g(x_2)+\Delta g(x_1,x_2)f(x_1)
\end{align*}
证明
其实只是一个代数恒等式,\begin{align*}\Delta(fg)(x_1,x_2)&=\frac{f(x_1)g(x_1)-f(x_2)g(x_2)}{x_1-x_2}\\
&=\frac{f(x_1)-f(x_2)}{x_1-x_2}g(x_1)+\frac{g(x_1)-g(x_2)}{x_1-x_2}f(x_2)\\
&=\Delta f(x_1,x_2)g(x_1)+\Delta g(x_1,x_2)f(x_2)\end{align*}
类似可证第2个式子.

由此可以推出,三个函数之积的差商:\begin{align*}\Delta(fgh)(x_1,x_2,x_3)&=\Delta f(x_1,x_2)g(x_3)h(x_3)+\Delta g(x_1,x_2)h(x_1)f(x_3)+\Delta h(x_1,x_2)g(x_2)f(x_3)\\
&=\Delta f(x_1,x_2)g(x_3)h(x_3)+\Delta g(x_1,x_2)h(x_2)f(x_3)+\Delta h(x_1,x_2)g(x_1)f(x_3)\\
&=\cdots
\end{align*}
总共应该是有$2\times3\times3=18$个这样的等式.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 17:37 GMT+8

Powered by Discuz!

Processed in 0.022430 second(s), 21 queries

× Quick Reply To Top Edit