Forgot password
 Register account
View 164|Reply 1

[不等式] 余弦的幂之积求最大值

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-11-5 07:42 |Read mode
正数$α_1,\cdots,α_n$使得$\sum_{i=1}^nα_i=π$,
正数$x_1,\cdots,x_n$使得$\sum_{i=1}^nx_i=π$,
求证
\[\prod_{i=1}^n(\cos x_i)^{\cot α_i}≤\prod_{i=1}^n(\cos α_i)^{\cot α_i}\]
例如$n=3$, $(α_1,α_2,α_3)=(\arctan1,\arctan2,\arctan3)$时$$\cos x_1\cdot(\cos x_2)^{1/2}\cdot(\cos x_2)^{1/3}≤\frac{1}{2^{2/3} 5^{5/12}}$$当$(x_1,x_2,x_3)=(α_1,α_2,α_3)$时取等.
  1. NMaximize[{a b^(1/2) c^(1/3), a^2 + b^2 + c^2 + 2 a b c == 1, 0 < a, 0 < b, 0 < c}, {a, b, c}]
Copy the Code
相关帖子:Circular Area maximising with polygons included. Help?

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-11-6 04:49

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:30 GMT+8

Powered by Discuz!

Processed in 0.011964 seconds, 22 queries