|
推广
Last edited by hbghlyj 2022-11-6 11:14令$x=\sqrt{a\over a + k b + c}$, 使用这帖的方法,\[
\det\begin{pmatrix}
1-x^{-2} &k & 1 \\
1 & 1-y^{-2} & k \\
k & 1 & 1-z^{-2}
\end{pmatrix}=0\]即$$-1 +\sum x^2+(k-1)\sum x^2 y^2+ (2-3k+k^3) x^2 y^2 z^2=0$$
- Maximize[{x+y+z,-1+x^2+y^2-x^2 y^2+k x^2 y^2+z^2-x^2 z^2+k x^2 z^2-y^2 z^2+k y^2 z^2+2 x^2 y^2 z^2-3 k x^2 y^2 z^2+k^3 x^2 y^2 z^2==0},{x,y,z}]
Copy the Code 可知, 当$k≤α≈3.29531$时有不等式\[\sum\sqrt{a\over a + k b + c}\le3\sqrt{1\over2+k}\]
$α$的精确值为Root[100 - 4130*#1 - 2291*#1^2 + 1825*#1^3 - 281*#1^4 + 16*#1^5 & , 3, 0]
当$k>α$时, 最大值满足$x=y≠z$, 比如
- k=3.3;
- Maximize[{x+y+z,-1+x^2+y^2-x^2 y^2+k x^2 y^2+z^2-x^2 z^2+k x^2 z^2-y^2 z^2+k y^2 z^2+2 x^2 y^2 z^2-3 k x^2 y^2 z^2+k^3 x^2 y^2 z^2==0},{x,y,z}]
Copy the Code 结果是当x=y=0.403734,z=0.495654时取等. |
|