Forgot password?
 Register account
View 156|Reply 2

[几何] 趋于圆的曲线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-10 21:45 |Read mode
$s\in\Bbb R$, 直线 $L=\{s+ti|t\in\Bbb R\}$ 当$s\to0$时趋于虚轴 $i\Bbb R$
$L$ 在映射 $z\mapsto z+\sqrt{1+z^2}$ 下的像:
  1. With[{s=0.001},ParametricPlot[ReIm[(s+t I)+Sqrt[1+(s+t I)^2]],{t,-2,2}]]
Copy the Code
可以看到, 当$s∈\Bbb R^+$趋于0时, 曲线的极限是一条射线∪半圆弧∪一条射线.

$L$ 在映射 $z\mapsto z-\sqrt{1+z^2}$ 下的像:
  1. With[{s=0.001},ParametricPlot[ReIm[(s+t I)-Sqrt[1+(s+t I)^2]],{t,-2,2}]]
Copy the Code
可以看到, 当$s∈\Bbb R^+$趋于0时, 曲线的极限是一条线段∪半圆弧.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-10 22:18
可以看到, 当$s∈\Bbb R^+$趋于0时, 曲线的极限是一条线段∪半圆弧.
完整的曲线可以写成$\frac{x}{x-2s}=x^2+y^2$

Comment

神奇!!!  Posted 2022-11-11 11:29

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit