Forgot password?
 Create new account
View 148|Reply 2

[几何] 两个顺相似变换的线性组合也是顺相似变换

[Copy link]

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2022-11-11 08:26:54 |Read mode
Last edited by hbghlyj at 2023-3-26 21:23:00定义: $T:\Bbb C\to\Bbb C,T(z)=az+b,(a,b\in\Bbb C)$ 称为顺相似变换
Fundamental Theorem of Directly Similar Figures
Let $F_0$ and $F_1$ denote two directly similar figures in the plane, where $P_1$ in $F_1$ corresponds to $P_0$ in $F_0$ under the given similarity. Let $r$ in $(0,1)$, and define $F_r=\{(1-r)P_0+rP_1:P_0\in F_0,P_1\in F_1\}$. Then $F_r$ is also directly similar to $F_0$.
证明:
设 $c$ 为相似中心(不动点), 则变换 $T_r(z)=(1-r)z+rT(z)$ 也是顺相似变换, 满足 $T_r(P_0)=(1-r)P_0+rP_1$, 且 $T_r(c)=(1-r)c+rT(c)=(1-r)c+rc=c$, 故 $T_r$ 的相似中心为$c$. 证毕.

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-11 08:37:57
$T(P_0)=P_1$. 对任意点 $z$, 变换 $T(z)$ 满足
\[\begin{vmatrix}
1 & 1 & 1 \\
P_0 & P_1 & c \\
z & T(z) & c \\
\end{vmatrix}=0\]
在$\Bbb C^2$中, 点 $(P_0,0)$、$(P_1,1)$ 的交点的第一坐标为 $c$ [可以求出交点为 $(c,\frac{c-P_0}{P_1-P_0})$].
又见这帖

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-27 04:22:28

手机版Mobile version|Leisure Math Forum

2025-4-21 01:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list