Forgot password?
 Register account
View 224|Reply 6

代数式恒等变形

[Copy link]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2022-11-11 16:49 |Read mode
(2007上海市初中数学竞赛)已知实数$a,b,c$,且$b\neq0$.若实数$x_1,x_2,y_1,y_2$满足$x_1^2+ax_2^2=b,x_2y_1-x_1y_2=a,x_1y_1+ax_2y_2=c$,则$y_1^2+ay_2^2$的值为

这题考查什么知识?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2022-11-11 17:24
第一感觉:拉格朗日恒等式

Comment

$(x_1^2+ax_2^2)(y_1^2+ay_2^2)=(x_1y_1+ax_2y_2)^2+a(x_1y_2-x_2y_1)^2$  Posted 2022-11-11 20:13
nice  Posted 2022-11-12 09:54

Rate

Number of participants 1威望 +2 Collapse Reason
tommywong + 2 <font style="vertical-align: inh

View Rating Log

这名字我喜欢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-11 18:48
又见Pell's Equation
A very useful way to combine solutions of the equation into new solutions is furnished by Brahmagupta's identity
\[
(x^2-ny^2)(a^2-nb^2) = (xa+nyb)^2 - n(xb+ya)^2.
\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-11 21:19
normed field $\Bbb R[\sqrt{-n}]=\{x+y\sqrt{-n}|x,y\in\Bbb R\}$
The case $n=1$ is $\Bbb C$
\begin{align*}\|x+y\sqrt{-n}\|\cdot\|a+b\sqrt{-n}\|&=(x^2+ny^2)(a^2+nb^2)
\\\|(x+y\sqrt{-n})\cdot(a+b\sqrt{-n})\|&=\|xa-nyb+(xb+ya)\sqrt{-n}\|=(xa-nyb)^2+n(xb+ya)^2\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-11-11 22:19
色k 发表于 2022-11-11 17:24
第一感觉:拉格朗日恒等式
还有点评公式,强大
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit