又见Pell's Equation
A very useful way to combine solutions of the equation into new solutions is furnished by Brahmagupta's identity
\[
(x^2-ny^2)(a^2-nb^2) = (xa+nyb)^2 - n(xb+ya)^2.
\]
normed field $\Bbb R[\sqrt{-n}]=\{x+y\sqrt{-n}|x,y\in\Bbb R\}$
The case $n=1$ is $\Bbb C$
\begin{align*}\|x+y\sqrt{-n}\|\cdot\|a+b\sqrt{-n}\|&=(x^2+ny^2)(a^2+nb^2)
\\\|(x+y\sqrt{-n})\cdot(a+b\sqrt{-n})\|&=\|xa-nyb+(xb+ya)\sqrt{-n}\|=(xa-nyb)^2+n(xb+ya)^2\end{align*}