Peter S. Bullen - Dictionary of Inequalities-Chapman & Hall_CRC (2015) page 54
(a) If $\underline z$ is complex $n$-tuple$$\left|\sum_{k=1}^{n} z_{k}\right| \leq \sum_{k=1}^n\left|z_{k}\right|$$with equality if and only if for all non-zero terms $z_j/z_k>0$
(b) For all $z_1,z_2,z_3\in\Bbb C$, $1 ≤ |1 + z_1| + |z_1 + z_2| + |z_2 + z_3| + |z_3|$
(c) [de Bruijn] If $\underline w$ is a real $n$-tuple and $\underline z$ a complex $n$-tuple then$$\left|\sum_{k=1}^{n} w_{k} z_{k}\right| \leq \frac{1}{\sqrt{2}}\left(\sum_{k=1}^{n} w_{k}^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}+\left|\sum_{k=1}^{n} z_{k}^{2}\right|\right)^{1 / 2}$$with equality if and only if for some complex $λ$, $w_k = ℜλz_k, 1 ≤ k ≤ n$, and $∑^n_{k=1} λ^2z^2_k ≥ 0$.
(d) If $z, w ∈\Bbb C, r ≥ 0$ then$$|z+w|^{r} \leq\left\{\begin{array}{ll}|z|^{r}+|w|^{r}, & \text { if } r \leq 1 \\ 2^{r-1}\left(|z|^{r}+|w|^{r}\right), & \text { if } r>1\end{array}\right.$$
对$\underline z=(-1,z_1,-z_2,z_3)$应用(a)就证明了(b).
如何证明(c)呢?
(d)见
Minkowski inequality
当$0\le r\le1$时 见
范数不等式
由$\left(\abs{z}\over \abs{z}+\abs{w}\right)^r+\left(\abs{w}\over \abs{z}+\abs{w}\right)^r\ge{\abs{z}\over \abs{z}+\abs{w}}+{\abs{w}\over \abs{z}+\abs{w}}=1$与三角不等式得$\abs{z}^r+\abs{w}^r\ge(\abs{z}+\abs{w})^r\ge\abs{z+w}^r$
当$r>1$时
由三角不等式$\abs{z+w\over2}^r\le\left(\abs z+\abs w\over2\right)^r$
对convex function $f(x)=x^r,x>0,r>1$使用Jensen不等式,$\left(\abs z+\abs w\over2\right)^r\le\frac{\abs{z}^r+\abs{w}^r}2$
所以$\abs{z+w\over2}^r\le\frac{\abs{z}^r+\abs{w}^r}2$
所以$|z+w|^r\le2^{r-1}(|z|^r+|w|^r)$