|
Ly-lie
Posted 2022-11-21 21:06
以$ BD $为直角边向下作等腰直角三角形$ BDE,
$由$ \frac{AD}{DE}=\frac{AD}{BD}=\frac{AC}{BC},\angle ADE=\angle ACB $知$ \triangle ABC\sim \triangle AED $,即$ \triangle ADC\sim \triangle AEB $,故$ \frac{BE}{CD}=\frac{AB}{AC} $,则\[ \frac{AB\cdot CD}{AC\cdot BD}=\sqrt{2}\cdot \frac{AB\cdot CD}{AC\cdot BE}=\sqrt{2} \]由弦切角即知夹角$ \theta =\angle CAD+\angle CBD=90\du $. |
|