Forgot password
 Register account
View 138|Reply 3

求证$\abs{f(x)-f(c)}\le g(x)-g(c)$

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2022-11-29 18:03 |Read mode
已知$f,g$都可导,且当$x\ge c$时有$\abs{f'(x)}\le g'(x)$,求证$\abs{f(x)-f(c)}\le g(x)-g(c)$。
感觉和中值定理有关,一时没弄出来。

3218

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-11-29 19:12
当$x\ge c$时$(f(x)-g(x))'=f'(x)-g'(x)\le0$
所以$f(x)-g(x)\searrow$
$f(x)-g(x)\le f(c)-g(c)$
是这样吗

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2022-11-29 19:19
hbghlyj 发表于 2022-11-29 19:12
当$x\ge c$时$(f(x)-g(x))'=f'(x)-g'(x)\le0$
所以$f(x)-g(x)\searrow$
$f(x)-g(x)\le f(c)-g(c)$
最后的$f(x)-f(c)$有绝对值,这样还推不出来吧?

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2022-11-29 20:23
弄出来了,因为$g'(x)\ge\abs{f'(x)}\ge0$,假设$g'(x)=0$,则$f'(x)=0$,从而$f,g$都是常数,命题成立,否则$g'(x)>0$,于是$g$是增函数。在$[c,x]$上根据柯西中值定理,存在$\xi\in(c,x)$使得
\[\abs{\frac{f(x)-f(c)}{g(x)-g(c)}}=\abs{\frac{f'(\xi)}{g'(\xi)}}\le1\]
因为$g$是增函数,所以$g(x)-g(c)\ge0$,所以$\abs{f(x)-f(c)}\le\abs{g(x)-g(c)}=g(x)-g(c)$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:43 GMT+8

Powered by Discuz!

Processed in 0.011499 seconds, 22 queries