Forgot password?
 Create new account
View 103|Reply 3

求证$\abs{f(x)-f(c)}\le g(x)-g(c)$

[Copy link]

418

Threads

1631

Posts

110K

Credits

Credits
11906

Show all posts

abababa Posted at 2022-11-29 18:03:00 |Read mode
已知$f,g$都可导,且当$x\ge c$时有$\abs{f'(x)}\le g'(x)$,求证$\abs{f(x)-f(c)}\le g(x)-g(c)$。
感觉和中值定理有关,一时没弄出来。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-11-29 19:12:34
当$x\ge c$时$(f(x)-g(x))'=f'(x)-g'(x)\le0$
所以$f(x)-g(x)\searrow$
$f(x)-g(x)\le f(c)-g(c)$
是这样吗

418

Threads

1631

Posts

110K

Credits

Credits
11906

Show all posts

 Author| abababa Posted at 2022-11-29 19:19:23
hbghlyj 发表于 2022-11-29 19:12
当$x\ge c$时$(f(x)-g(x))'=f'(x)-g'(x)\le0$
所以$f(x)-g(x)\searrow$
$f(x)-g(x)\le f(c)-g(c)$
最后的$f(x)-f(c)$有绝对值,这样还推不出来吧?

418

Threads

1631

Posts

110K

Credits

Credits
11906

Show all posts

 Author| abababa Posted at 2022-11-29 20:23:11
弄出来了,因为$g'(x)\ge\abs{f'(x)}\ge0$,假设$g'(x)=0$,则$f'(x)=0$,从而$f,g$都是常数,命题成立,否则$g'(x)>0$,于是$g$是增函数。在$[c,x]$上根据柯西中值定理,存在$\xi\in(c,x)$使得
\[\abs{\frac{f(x)-f(c)}{g(x)-g(c)}}=\abs{\frac{f'(\xi)}{g'(\xi)}}\le1\]
因为$g$是增函数,所以$g(x)-g(c)\ge0$,所以$\abs{f(x)-f(c)}\le\abs{g(x)-g(c)}=g(x)-g(c)$

手机版Mobile version|Leisure Math Forum

2025-4-21 19:03 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list