Forgot password?
 Register account
View 317|Reply 2

[数列] 某个sin数列存在趋于0、±∞的子列

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-12-5 12:56 |Read mode
Last edited by hbghlyj 2022-12-5 16:40这帖的第2问的回答中省略了一步:
Let$$b_n = n\sin\left(\frac{n^2+1}n\frac\pi2\right)$$As $n \to +\infty$ we can consider three subsequences of $b_n$:
\begin{aligned}
b_{n_k} &\to +\infty\\
b_{m_k} &\equiv 0\\
b_{l_k} &\to -\infty
\end{aligned}We are not interested in finding $n_k$, $m_k$ and $l_k$, but it is fairly easy to prove that they exist. Hint: recall that $n \to +\infty$ and use the fact that $\sin x \in [-1, 1]$.
如何证明$n_k$, $m_k$ 与 $l_k$存在呢

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2022-12-5 17:07
Last edited by 色k 2022-12-5 17:29\[b_n=n\sin\left(\frac{n\pi}2+\frac\pi{2n}\right),\]
则当 `k` 为整数且 `k\to+\infty` 时
\begin{align*}
b_{4k+1}&=(4k+1)\sin\left(\frac\pi2+\frac\pi{8k+2}\right)\to+\infty,\\
b_{4k-1}&=(4k-1)\sin\left(-\frac\pi2+\frac\pi{8k-2}\right)\to-\infty,\\
b_{4k}&=4k\sin\frac\pi{8k}\to\frac\pi2,\\
b_{4k+2}&=(4k+2)\sin\left(\pi+\frac\pi{8k+4}\right)\to-\frac\pi2,
\end{align*}
可见楼主所引用的内容里,正负无穷的对,而零的不对。
这名字我喜欢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-12-5 19:19
色k 发表于 2022-12-5 10:07
\
则当 `k` 为整数且 `k\to+\infty` 时
\begin{align*}
谢谢. 所以原题答案应该是$$\liminf a_n = \cosh(\pi/2),\qquad\limsup a_n = +\infty$$

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit