参考《Cauchy Schwarz不等式之本质与意义》,林琦焜
向量分析-Cauchy-Schwarz不等式之本質與意義-林琦焜.pdf
Cauchy不等式(实数有限数列)
条件:ai, bi ∈ R, ∀i = 1, ⋯, n
不等式:$\left( \sum_{i = 1}^{n}{a_{i}b_{i}} \right)^{2} \leq \left( \sum_{i = 1}^{n}a_{i}^{2} \right)\left( \sum_{i = 1}^{n}b_{i}^{2} \right)
$等式成立的充要条件:ai = λbi, λ ∈ R, ∀i = 1, ⋯, n
扩展到复数(复数有限数列)
条件:ai, bi ∈ ℂ, ∀i = 1, ⋯, n
不等式:$\left| \sum_{i = 1}^{n}{a_{i}b_{i}} \right|^{2} \leq \left( \sum_{i = 1}^{n}\left| a_{i} \right|^{2} \right)\left( \sum_{i = 1}^{n}\left| b_{i} \right|^{2} \right)$
等式成立的充要条件:ai = λbi, λ ∈ ℂ, ∀i = 1, ⋯, n
向量形式
$|α⋅β|≤|α||β|$
扩展到无穷数列
条件:$a_i, b_i∈\mathbb C, ∀i= 1, ⋯,$
不等式:$\left| \sum_{i = 1}^{\infty}{a_{i}b_{i}} \right| \leq \left( \sum_{i = 1}^{\infty}\left| a_{i} \right|^{2} \right)^{\frac{1}{2}}\left( \sum_{i = 1}^{\infty}\left| b_{i} \right|^{2} \right)^{\frac{1}{2}}$
等式成立的充要条件:ai = λbi, λ ∈ C, ∀i = 1, ⋯,
简单的推论:如果$\sum_{i = 1}^{\infty}\left| a_{i} \right|^{2} < \infty,\sum_{i = 1}^{\infty}\left| b_{i} \right|^{2} <\infty$,则$\left| \sum_{i = 1}^{\infty}{a_{i}b_{i}} \right| <\infty$
对此结论的应用……原文中提到了实变函数论,泛函分析,$l^2$空间,量子力学.
推广到定积分形式
从分析学的思考过程,无穷级数可以很自然的延伸到积分.
条件f, g ∈ ℭ[a, b],即$f,g$是定义在区间$[a,b]$内的连续函数.
不等式:|∫abf(x)g(x)dx|2 ≤ ∫ab|f(x)|2dx∫ab|g(x)|2dx
更宽泛的,我们只需要求$f,g$是平方可积函数,即f, g ∈ L2[a, b],而不需要连续,就可以保证不等式成立.
推广:$\mathbf{H}\ddot{\mathbf{o}}\mathbf{\text{lder}}$不等式
$\mathbf{H}\ddot{\mathbf{o}}\mathbf{\text{lder}}$不等式(有限/无限复级数形式)
条件:ai, bi ∈ ℂ, ∀i = 1, ⋯, n,且$p,q \geq 1,\frac{1}{p} + \frac{1}{q} = 1$
不等式:$\left| \sum_{i = 1}^{n}{a_{i}b_{i}} \right| \leq \left( \sum_{i = 1}^{n}\left| a_{i} \right|^{p} \right)^{\frac{1}{p}}\left( \sum_{i = 1}^{n}\left| b_{i} \right|^{q} \right)^{\frac{1}{q}}
$等式成立的充要条件:ai = λbi, λ ∈ C, ∀i = 1, ⋯, n
对n → ∞也成立
$\mathbf{H}\ddot{\mathbf{o}}\mathbf{\text{lder}}$不等式(定积分形式)
条件:f, g ∈ ℭ[a, b],即$f,g$是定义在区间$[a,b]$内的连续函数,且$p,q \geq 1,\frac{1}{p} + \frac{1}{q} = 1$.
不等式:$\left| \int_{a}^{b}{f(x)g(x)\text{dx}} \right| \leq \left( \int_{a}^{b}\left| f(x) \right|^{p}\text{dx} \right)^{\frac{1}{p}}\left( \int_{a}^{b}\left| g(x) \right|^{q}\text{dx} \right)^{\frac{1}{q}}$
$\mathbf{H}\ddot{\mathbf{o}}\mathbf{\text{lder}}$不等式(定积分形式,多个函数)
条件:$f_{1},f_{2},\ldots,f_{n}\mathfrak{\in C}\lbrack a,b\rbrack$,且$p_{i} \geq 1,\sum_{i = 1}^{n}\frac{1}{p_{i}} = 1$.
不等式:$\left| \int_{a}^{b}{\prod_{i = 1}^{n}{f_{i}(x)\text{dx}}} \right| \leq \prod_{i = 1}^{n}\left( \int_{a}^{b}\left| f_{i}(x) \right|^{p_{i}}\text{dx} \right)^{\frac{1}{p_{i}}}$
其他介绍
引用的文章(《Cauchy Schwarz不等式之本质与意义》,林琦焜)中提到,柯西不等式的最简单解释是利用“角度”的概念,用几何学中的余弦定理可以很清楚的表示并证明出二三维的柯西不等式.而$\rm H\ddot{o}lder$不等式的证明是数学分析课程中的经典题目.更详细的证明可以参考本文开头的文章. |