Forgot password
 Register account
View 2513|Reply 6

[数论] 请教一整数解问题

[Copy link]

7

Threads

19

Posts

0

Reputation

Show all posts

wenshengli posted 2013-11-22 08:46 |Read mode
给定无理数a,b,证明方程\[|x+ay+\frac{1}{3}|+|ax-y+\frac{a}{3}|=b\]的整数解(x,y)只有一组.

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2013-11-24 23:26
觉得更可能无解才对,比如给定$a=\sqrt{2},b=\sqrt{3}$

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-11-25 17:40
回复 2# realnumber
那就改成至多有一组整数解?

7

Threads

19

Posts

0

Reputation

Show all posts

original poster wenshengli posted 2013-11-26 08:27
回复 3# 其妙
请问改了以后如何解?谢谢!

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-11-26 12:53
回复 4# wenshengli
题目来源?

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2013-11-26 15:47
回复 1# wenshengli

反证法不错
不妨假设这方程有两组或更多整数解$(x_1,y_1), (x_2,y_2)$
于是有
\[\abs{x_1+ay_1+\frac{1}{3}}+\abs{ax_1-y_1+\frac{a}{3}}=b\]
\[\abs{x_2+ay_2+\frac{1}{3}}+\abs{ax_2-y_2+\frac{a}{3}}=b\]
无论这些个绝对值怎么拆,都是个线性方程组,最后肯定得到$a,b$都是$x_1,x_2,y_1,y_2$的各种线性或乘除组合,怎么地都会是有理数,与原题矛盾

7

Threads

19

Posts

0

Reputation

Show all posts

original poster wenshengli posted 2013-11-26 20:13
回复 6# 战巡

非常感谢!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:45 GMT+8

Powered by Discuz!

Processed in 0.012026 seconds, 22 queries