Forgot password?
 Create new account
View 2393|Reply 6

[数论] 请教一整数解问题

[Copy link]

7

Threads

19

Posts

149

Credits

Credits
149

Show all posts

wenshengli Posted at 2013-11-22 08:46:50 |Read mode
给定无理数a,b,证明方程\[|x+ay+\frac{1}{3}|+|ax-y+\frac{a}{3}|=b\]的整数解(x,y)只有一组.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-11-24 23:26:24
觉得更可能无解才对,比如给定$a=\sqrt{2},b=\sqrt{3}$

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-25 17:40:55
回复 2# realnumber
那就改成至多有一组整数解?

7

Threads

19

Posts

149

Credits

Credits
149

Show all posts

 Author| wenshengli Posted at 2013-11-26 08:27:00
回复 3# 其妙
请问改了以后如何解?谢谢!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-26 12:53:16
回复 4# wenshengli
题目来源?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-11-26 15:47:30
回复 1# wenshengli

反证法不错
不妨假设这方程有两组或更多整数解$(x_1,y_1), (x_2,y_2)$
于是有
\[\abs{x_1+ay_1+\frac{1}{3}}+\abs{ax_1-y_1+\frac{a}{3}}=b\]
\[\abs{x_2+ay_2+\frac{1}{3}}+\abs{ax_2-y_2+\frac{a}{3}}=b\]
无论这些个绝对值怎么拆,都是个线性方程组,最后肯定得到$a,b$都是$x_1,x_2,y_1,y_2$的各种线性或乘除组合,怎么地都会是有理数,与原题矛盾

7

Threads

19

Posts

149

Credits

Credits
149

Show all posts

 Author| wenshengli Posted at 2013-11-26 20:13:13
回复 6# 战巡

非常感谢!

手机版Mobile version|Leisure Math Forum

2025-4-22 06:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list