Forgot password?
 Register account
View 256|Reply 1

[函数] x²≤tanh(x)tanh⁻¹(x)

[Copy link]

3161

Threads

7941

Posts

610K

Credits

Credits
63780
QQ

Show all posts

hbghlyj Posted 2022-12-16 04:37 |Read mode
$$\frac{x}{\arctanh(x)}\leq \frac{\tanh(x)}{x}\qquad0<x<1$$
Best value of an expression
设 $A(x,-\tanh{x})$, $B(x,\arctanh{x})$, $C(x,\tanh{x})$, $C'(\tanh{x},x)$, $D(x,0)$.
因为 $\operatorname{arctanh}$ 是 $[0,1)$ 上的凸、增函数,并且 $C$ 和 $C'$ 关于 $y=x$ 对称,我们得到:$$\measuredangle BOA\geq\measuredangle C'OA=90^{\circ}.$$
所以 $OD^2\leq BD\cdot AD$,即
$$x^2\leq\operatorname{arctanh}{x}\tanh{x}$$

3161

Threads

7941

Posts

610K

Credits

Credits
63780
QQ

Show all posts

 Author| hbghlyj Posted 2022-12-16 06:05
重写一下:
$\tanh x$是凸、增函数$⇒f(x)=\frac{\tanh x}{x}$是增函数
$$\arctanh x≤x⇒f(\arctanh x)≤f(x)⇒\frac{x}{\arctanh x}≤\frac{\tanh x}x\qquad0<x<1$$

同样可得$$\frac{x}{\arctan x}≤\frac{\tan x}{x}\qquad0<x<\frac\pi2$$和$$\frac{x}{\arcsin x}≤\frac{\sin x}{x}\qquad0<x<1$$

Mobile version|Discuz Math Forum

2025-6-1 18:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit