Forgot password
 Register account
View 187|Reply 1

[函数] x²≤tanh(x)tanh⁻¹(x)

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-12-16 04:37 |Read mode
$$\frac{x}{\arctanh(x)}\leq \frac{\tanh(x)}{x}\qquad0<x<1$$
Best value of an expression
设 $A(x,-\tanh{x})$, $B(x,\arctanh{x})$, $C(x,\tanh{x})$, $C'(\tanh{x},x)$, $D(x,0)$.
因为 $\operatorname{arctanh}$ 是 $[0,1)$ 上的凸、增函数,并且 $C$ 和 $C'$ 关于 $y=x$ 对称,我们得到:$$\measuredangle BOA\geq\measuredangle C'OA=90^{\circ}.$$
所以 $OD^2\leq BD\cdot AD$,即
$$x^2\leq\operatorname{arctanh}{x}\tanh{x}$$

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-12-16 06:05
重写一下:
$\tanh x$是凸、增函数$⇒f(x)=\frac{\tanh x}{x}$是增函数
$$\arctanh x≤x⇒f(\arctanh x)≤f(x)⇒\frac{x}{\arctanh x}≤\frac{\tanh x}x\qquad0<x<1$$

同样可得$$\frac{x}{\arctan x}≤\frac{\tan x}{x}\qquad0<x<\frac\pi2$$和$$\frac{x}{\arcsin x}≤\frac{\sin x}{x}\qquad0<x<1$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-17 00:05 GMT+8

Powered by Discuz!

Processed in 0.011332 seconds, 22 queries