Forgot password?
 Create new account
View 168|Reply 6

$ℂ^2$去掉对角线的连通分支

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-12-23 23:34:30 |Read mode
Last edited by hbghlyj at 2022-12-24 04:27:00求$X=\left\{(z, w)∈ℂ^2: z≠w\right\}$作为$ℂ^2$的子集的拓扑的连通分支.

我的想法:
等价于求$X=\left\{(a,b,c,d)∈ℝ^4: (a,b)≠(c,d)\right\}$作为$ℝ^4$的子集的拓扑的连通分支.

Comment

$(X\setminus \{(a,a,c,d)\})\setminus \{(a,b,c,c)\}$  应该是四个连通分支吧.  Posted at 2022-12-24 12:20

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-1-19 05:46:19
Czhang271828 发表于 2022-12-24 05:20
$(X\setminus \{(a,a,c,d)\})\setminus \{(a,b,c,c)\}$  应该是四个连通分支吧.
但是我觉得四维空间去掉二维子空间是连通的吧

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-1-19 07:44:28
$X$是连通的.
证明:
设$(z_1,w_1),(z_2,w_2)∈X$, 则$z_1≠w_1$且$z_2≠w_2$.
情况1. 若$z_2≠w_1$

在$\Bbb C∖\{w_1\}$中, 存在路径$\gamma_1$连接$z_1$与$z_2$,
则路径$\Gamma_1(t)=(\gamma_1(t),w_1)$连接$(z_1,w_1)$与$(z_2,w_1)$, 且不含$\Bbb C^2$对角线上的点.
在$\Bbb C∖\{z_2\}$中, 存在路径$\gamma_2$连接$w_1$与$w_2$,
则路径$\Gamma_2(t)=(z_2,\gamma_2(t))$连接$(z_2,w_1)$与$(z_2,w_2)$, 且不含$\Bbb C^2$对角线上的点.
因此, 路径$\Gamma_1\ast\Gamma_2$连接$(z_1,w_1)$与$(z_2,w_2)$, 且不含$\Bbb C^2$对角线上的点.
情况2. 若$z_2=w_1$
取$w\in\Bbb C∖\{z_1,w_1\}$,
在$\Bbb C∖\{z_1\}$中, 存在路径$\gamma_1$连接$w_1$与$w$,
则路径$\Gamma_1(t)=(z_1,\gamma_1(t))$连接$(z_1,w_1)$与$(z_1,w)$, 且不含$\Bbb C^2$对角线上的点.
根据情况1, 存在路径$\Gamma_2$连接$(z_1,w)$与$(z_2,w_2)$, 且不含$\Bbb C^2$对角线上的点.
因此, 路径$\Gamma_1\ast\Gamma_2$连接$(z_1,w_1)$与$(z_2,w_2)$, 且不含$\Bbb C^2$对角线上的点.
好绕啊...我做得对吗

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-1-19 13:09:38
hbghlyj 发表于 2023-1-19 05:46
但是我觉得四维空间去掉二维子空间是连通的吧
你说的对, $n+2$ 维连通流形去掉有限个不超过 $n$ 维的子流形后仍是连通的.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-1-19 17:15:27
Czhang271828 发表于 2023-1-19 06:09
你说的对, $n+2$ 维连通流形去掉有限个不超过 $n$ 维的子流形后仍是连通的.

Complement of codim 2 manifold is connected?
Complement of a codimension $k\geq 2$ submanifold is path-connected

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-7 20:01:31
hbghlyj 发表于 2023-1-19 00:44
$X$是连通的.
证明:
设$(z_1,w_1),(z_2,w_2)∈X$, 则$z_1≠w_1$且$z_2≠w_2$.
有一种做法, 不需要分情况, 容易推广到证明“$ℝ^n(n≥4)$去掉2维子空间仍连通”:
$Y=\{(a,b,a,b):a,b∈ℝ\}$ is a linear subspace of $ℝ^4$, we have $Y^⟂=\{(a,b,-a,-b):a,b∈ℝ\}$.
For $(a_1,b_1,c_1,d_1),(a_2,b_2,c_2,d_2)∈X=ℝ^4∖Y$, let $y_1=\left(-\frac{a_1+c_1}2,-\frac{b_1+d_1}2,-\frac{a_1+c_1}2,-\frac{b_1+d_1}2\right)$, $y_2=\left(-\frac{a_1+a_2}2,-\frac{b_2+d_2}2,-\frac{a_2+c_2}2,-\frac{b_2+d_2}2\right)$, $x_1=(a_1,b_1,c_1,d_1)+y_1=\left(\frac{a_1-c_1}2,\frac{b_1-d_1}2,\frac{c_1-a_1}2,\frac{d_1-b_1}2\right)$ and $x_2=(a_2,b_2,c_2,d_2)+y_2=\left(\frac{a_2-c_2}2,\frac{b_2-d_2}2,\frac{c_2-a_2}2,\frac{d_2-b_2}2\right)$, then $x_1,x_2∈Y^⟂$, and $(a_1,b_1,c_1,d_1)+ty_1,t∈[0,1]$ is a path in $X$ from $(a_1,b_1,c_1,d_1)$ to $x_1$, $(a_2,b_2,c_2,d_2)+ty_2,t∈[0,1]$ is a path in $X$ from $(a_2,b_2,c_2,d_2)$ to $x_2$. Finally, since $Y∩Y^⟂=\{0\}$ and $Y^⟂≅ℝ^2$ and $ℝ^2∖\{0\}$ is connected, there is a path connecting $x_1,x_2$ in $Y^⟂∖\{0\}⊂X$.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list