|
Author |
isee
Posted 2014-6-27 14:21
Last edited by hbghlyj 2025-3-21 04:11回复 10# 青青子衿
链接帖的主楼的4,就是完整的结论,至于解析证明网上很多,比如11年kuing给的:
不妨设椭圆方程为 $a x^2+b y^2=1, a, b>0$ ,设定点 $A\left(x_0, y_0\right)$ ,则 $a x_0^2+b y_0^2=1$ .
又设 $B\left(x_1, y_1\right), C\left(x_2, y_2\right), L_{A B}: y-y_0=k\left(x-x_0\right)$ ,则 $L_{A C}: y-y_0=-\frac{1}{k}\left(x-x_0\right)$ .
联立 $L_{A B}$ 与椭圆方程,消去 $y$ 得
\[
\left(a+b k^2\right) x^2-2 b k\left(k x_0-y_0\right) x+b\left(k x_0-y_0\right)^2-1=0
\]
由韦达定理,有 $x_0+x_1=\frac{2 b k\left(k x_0-y_0\right)}{a+b k^2}$ ,即 $x_1=\frac{2 b k\left(k x_0-y_0\right)}{a+b k^2}-x_0$ ,
将 $k$ 变成 $-\frac{1}{k}$ 即得 $x_2=\frac{2 b\left(x_0+k y_0\right)}{a k^2+b}-x_0$ ,
类似地可以得到 $y_1=-\frac{2 a\left(k x_0-y_0\right)}{a+b k^2}-y_0, y_2=\frac{2 a k\left(x_0+k y_0\right)}{a k^2+b}-y_0$ .
又 $L_{B C}:\left(y_1-y_2\right) x-\left(x_1-x_2\right) y+x_1 y_2-x_2 y_1=0$ ,代入以上数据后暴力大化简整理,最终得 $L_{B C}: a b\left(x_0 y+x y_0\right) k^2+\left((a+b)\left(a x_0 x-b y_0 y\right)+a-b\right) k=a b\left(x_0 y+x y_0\right)$ .
\[
\text { 令 }\left\{\begin{array} { l }
{ x _ { 0 } y + x y _ { 0 } = 0 , } \\
{ ( a + b ) ( a x _ { 0 } x - b y _ { 0 } y ) + a - b = 0 , }
\end{array} \text { 解得 } \left\{\begin{array}{l}
x=-\frac{x_0(a-b)}{(a+b)\left(a x_0^2+b y_0^2\right)}=-\frac{a-b}{a+b} x_0, \\
y=\frac{y_0(a-b)}{(a+b)\left(a x_0^2+b y_0^2\right)}=\frac{a-b}{a+b} y_0 .
\end{array}\right.\right.
\]
即点 $\left(-\frac{a-b}{a+b} x_0, \frac{a-b}{a+b} y_0\right)$ 就是直线过的定点. |
|