Forgot password?
 Create new account
View 125|Reply 2

伴随算子的秩相等

[Copy link]

3147

Threads

8495

Posts

610K

Credits

Credits
66173
QQ

Show all posts

hbghlyj Posted at 2023-5-26 02:06:18 |Read mode
Suppose $T: V \rightarrow W$ is a linear transformation, where $v$ and $W$ are finite-dimensional vector spaces. If $T^*$ is the adjoint of $T$, show that:
$$\operatorname{rank}(T) =\operatorname{rank}(T^*)$$
MSE:从以下2个等式推出
  • $\operatorname{dim} N(T)^{\perp}=\operatorname{dim} V - \operatorname{dim}N(T) =\operatorname{dim} R(T)$.
  • $R(T^*)^{\perp}=N(T).$

2的证明:
$\forall x\in R(T^*)^{\perp}:\forall y\in W:0=\langle x,T^*y\rangle=\langle Tx,y\rangle\Rightarrow Tx=0\Rightarrow x\in N(T)$
另一方面,
$\forall x\in N(T):\forall y\in W:Tx=0\Rightarrow0=\langle Tx,y\rangle=\langle x,T^*y\rangle\Rightarrow x\in R(T^*)^{\perp}$

相关:
知乎—如何直观的理解线性代数中伴随算子 、自伴算子、正规算子?

3147

Threads

8495

Posts

610K

Credits

Credits
66173
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-27 04:26:19

Every square matrix is similar to its transpose

Every $A \in M_n(\mathbb{C})$ is similar to $A^T$, the transpose of $A$.
ysharifi.wordpress.com/2022/03/15/every-squar … ar-to-its-transpose/

3147

Threads

8495

Posts

610K

Credits

Credits
66173
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-30 01:28:10
方程$Ax=b$有解的充要条件是$A^Ty=0$,$y^Tb=0$
solvability condition
this is really just a re-phrasing of the standard result for finite-dimensional inner product spaces im(A) = ker(A): “the image of A is the orthogonal complement of the kernel of A”.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list