|
Image of adjoint equals orthogonal complement of kernel
Let ${\bf v}\in{\rm im}(T^\ast)$, then ${\bf v}=T^\ast({\bf w})$ for some ${\bf w}\in W$. Now, given ${\bf u}\in\ker T$, we see that $T({\bf u})={\bf 0}$ and therefore
$$\langle {\bf u}\mid{\bf v}\rangle
=\langle {\bf u}\mid T^\ast({\bf w})\rangle
=\langle T({\bf u})\mid {\bf w}\rangle
=\langle {\bf 0}\mid{\bf w}\rangle
=0.$$
That is, ${\bf v}\in(\ker T)^\perp$. Conversely, if ${\bf v}\notin{\rm im}(T^\ast)$, then there exists an ${\bf v}'\in{\rm im}(T^\ast)^\perp$ such that $\langle {\bf v}\mid{\bf v}'\rangle\ne 0$.
In fact, we have ${\bf v}'\in\ker T$ because $T^\ast T({\bf v}')\in{\rm im}(T^\ast)$, which implies
$$\langle T({\bf v}')\mid T({\bf v}')\rangle
=\langle {\bf v}'\mid T^\ast T({\bf v}')\rangle=0\quad\Longrightarrow\quad
T({\bf v}')={\bf 0}.$$
Therefore ${\bf v}\notin(\ker T)^\perp$, which completes the proof.
|
|