|
$$f(z)=\csc\frac1z$$- FunctionSingularities[1/Sin[1/z], z]
Copy the Code $\{0\}\cup\Set{\frac1{n\pi}|n\inZ}$
So 0 is a non-isolated singularity.
But $f$ is integrable on the unit circle
$$\int_{\abs z=1}f(z)\rmd z=-1\cdot2\pi i\operatorname*{Res}_{z=\infty}f(z)=\frac\pi3i$$
Here $-1$ is the winding number of unit circle around $\infty$.
- Chop[NIntegrate[1/Sin[1/z], {z, 1, I, -1, -I, 1}] - Pi/3 I] == 0
Copy the Code Out: True |
|