Forgot password?
 Create new account
View 102|Reply 0

Riemann-Lebesgue Lemma $C((0,2π))$

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-4-30 21:53:04 |Read mode
Riemann-Lebesgue Lemma 对 $f\in L^1([0,2π])$ 成立,所以对 $f\in C([0,2π])$ 成立:
\[\int_0^{2\pi} f(x) \sin(n x) \rmd x\to0\]
但对于$f\in C((0,2π))$,$f$不一定$\in L^1$,所以上式不成立.


考虑
\[
\int_0^{2 \pi} \frac{\sin (n x)}{x^\alpha}\rmd x
\]
当$x\to0$,$\frac{\sin (n x)}{x^\alpha}\sim nx^{1-\alpha}$,所以$\alpha>1$时积分发散。

当$\alpha=1$时积分收敛。当$n\to\infty$时积分的极限是$\frac\pi2$:
\[
\int_0^{2 \pi} \frac{\sin (n x)}{x} \rmd x=\operatorname{Si}(2 \pi n)\to\frac\pi2
\]
当$0<\alpha<1$时积分收敛,且$\frac{\sin (n x)}{x^\alpha}\in L^1((0,2\pi))$,由Riemann-Lebesgue Lemma,当$n\to\infty$时积分的极限是0

手机版Mobile version|Leisure Math Forum

2025-4-20 21:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list