Forgot password?
 Create new account
View 2680|Reply 5

[不等式] 三元均值不等式的一个反向

[Copy link]

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

reny Posted at 2013-8-25 22:54:14 |Read mode
Last edited by hbghlyj at 2025-3-22 01:29:39设$x,y,z\inR^+$,求证
$$\frac{x+y+z}{3}-\sqrt[3]{xyz}\leq\frac{|x+y-2z|+|y+z-2x|+|z+x-2y|}{6}$$

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-25 23:25:57
Last edited by hbghlyj at 2025-3-22 01:29:35
设$x,y,z\inR^+$,求证
$$\frac{x+y+z}{3}-\sqrt[3]{xyz}\leq\frac{|x+y-2z|+|y+z-2x|+|z+x-2y|}{6}$$
reny 发表于 2013-8-25 22:54

由全对称性不妨设 $x\geqslant y\geqslant z$,则原不等式等价于
\[\frac{x+y+z}3-\sqrt[3]{xyz}\leqslant \frac{3x-3z+|z+x-2y|}6.\]

(1)若 $z+x\geqslant 2y$,要证的化为
\[\frac{x+y+z}3-\sqrt[3]{xyz}\leqslant \frac{2x-y-z}3,\]
整理为
\[\frac{2y-z-x}3+z\leqslant \sqrt[3]{xyz},\]
由所设知显然成立;

(2)若 $z+x\leqslant 2y$,要证的化为
\[\frac{x+y+z}3-\sqrt[3]{xyz}\leqslant \frac{x+y-2z}3,\]

\[z\leqslant \sqrt[3]{xyz},\]
显然成立。

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

 Author| reny Posted at 2013-8-25 23:28:33
回复 2# kuing
kk,真是快啊!

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

 Author| reny Posted at 2013-8-25 23:46:52
一般地,设$x_1,x_2,\cdots,x_n\in R^{+},n\geqslant 2$,我们有
$$\frac{x_1+x_2+\cdots+x_n}{n}-\sqrt[n]{x_1x_2\cdots x_n}\leqslant\frac{1}{2n}\sum_{cyc}{|x_1+x_2+\cdots-(n-1)x_n|}$$

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-26 13:24:07
回复 4# reny

这个是你猜想的还是已经证出了?

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

 Author| reny Posted at 2013-8-26 20:03:55
回复 5# kuing
这个不是我猜测的,是在artofproblemsolving.com/Forum/viewtopic.php?f … 52&t=550748&看到的

手机版Mobile version|Leisure Math Forum

2025-4-21 13:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list