|
睡神
Posted at 2013-9-5 21:03:42
Last edited by hbghlyj at 2025-3-22 01:25:47虽然我的方法和px的差不多,但还是把它贴上来吧...
当 $n=1$ 时,$\frac{1}{2-1}=1<\frac{37}{15}$
当 $n \geq 2$ 时,
先证:$\frac{2 n}{2^{2 n}+1}+\frac{2 n+1}{2^{2 n+1}-1}<\frac{2 n}{2^{2 n}}+\frac{2 n+1}{2^{2 n+1}}$
\[
\Leftrightarrow \frac{(6 n+1) 2^{2 n}+1}{\left(2^{2 n}+1\right)\left(2^{2 n+1}-1\right)}<\frac{6 n+1}{2^{2 n+1}} \Leftrightarrow(6 n-1) 2^{2 n}>6 n+1 \Leftrightarrow 2^{2 n}>\frac{6 n+1}{6 n-1}
\]
因为 $2^{2 n} \geq 4>\frac{7}{5} \geq 1+\frac{2}{6 n-1}$ ,所以 $\frac{2 n}{2^{2 n}+1}+\frac{2 n+1}{2^{2 n+1}-1}<\frac{2 n}{2^{2 n}}+\frac{2 n+1}{2^{2 n+1}}$而 $\frac{2}{2^2+1}+\frac{3}{2^3-1}=\frac{29}{35}<\frac{101}{120}=\frac{2}{2^2}+\frac{3}{2^3}-\frac{1}{30}$(这个是根据答案凑的)此时,
\[
\begin{aligned}
& \sum_{k=1}^n \frac{k}{2^k+(-1)^k}<1+\sum_{k=1}^n\left(\frac{2 k}{2^{2 k}+1}+\frac{2 k+1}{2^{2 k+1}-1}\right)-\frac{1}{30}<\frac{29}{30}+\sum_{k=1}^n\left(\frac{2 k}{2^{2 k}}+\frac{2 k+1}{2^{2 k+1}}\right) \\
< & \frac{29}{30}+2 \times\left(\frac{1}{2}+\frac{\frac{1}{8}}{1-\frac{1}{2}}\right)=\frac{37}{15}
\end{aligned}
\] |
|