Forgot password?
 Create new account
View 1468|Reply 6

2014安徽初赛

[Copy link]

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

wzxsjz Posted at 2014-7-24 23:02:17 |Read mode
请帮帮忙,谢谢!
设动点$P(t,0),Q(1,t),$其中参数$t\in[0,1],$则线段$PQ$扫过的平面区域的面积是__________

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-7-24 23:24:18
Last edited by realnumber at 2014-7-24 23:43:00想简单了,我错了

700

Threads

110K

Posts

910K

Credits

Credits
94238
QQ

Show all posts

kuing Posted at 2014-7-24 23:34:12
照搬《数学空间》2013年第4期总第14期P38那个方法就行了。

设 $x_0\in(0,1)$,当 $0<t<1$ 时,直线 $x=x_0$ 与直线 $PQ$ 交于 $K(x_0,y_0)$,易得
\[y_0=\frac{t}{1-t}(x_0-t)=-(1-t)-\frac{1-x_0}{1-t}+2-x_0\leqslant -2\sqrt{1-x_0}+2-x_0,\]
等号显然总能取到,于是,点 $\bigl( x_0,-2\sqrt{1-x_0}+2-x_0 \bigr)$ 必在 $PQ$ 扫过的区域的边界曲线上,亦即边界曲线的解析式为
\[y=-2\sqrt{1-x}+2-x, \]
于是所求面积为
\[\int_0^1-2\sqrt{1-x}+2-x\rmd x=\frac16.\]

25

Threads

1021

Posts

110K

Credits

Credits
12702

Show all posts

战巡 Posted at 2014-7-24 23:50:30
回复 1# wzxsjz


怕毛,硬来就行了
易求曲线族为$F(x,y,t)=\frac{t}{1-t}(x-t)-y=0$
联立方程:
\[\begin{cases} F(x,y,t)=0\\ \frac{\partial F(x,y,t)}{\partial t}=0\end{cases}\]
\[\begin{cases} t(x-t)=y(1-t)\\ x-t(2-t)=0\end{cases}\]
并消掉参数$t$可得包络线方程:
\[y=2-2\sqrt{1-x}-x\]
面积积分可得:
\[S=\int_{0}^1(2-2\sqrt{1-x}-x)dx=\frac{1}{6}\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-25 10:19:22
这里有初赛的所有试题和解答:blog.sina.com.cn/s/blog_54df069f0102uwlb.html

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-7-25 11:28:15
这样看来,想用几何变换是不可能的喽

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

 Author| wzxsjz Posted at 2014-7-25 12:53:11
谢谢各位

手机版Mobile version|Leisure Math Forum

2025-4-23 14:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list