Forgot password?
 Create new account
View 1511|Reply 1

特殊矩阵的特征多项式是否有规律?特征根呢?

[Copy link]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2015-1-25 14:27:10 |Read mode
2blog png图片.png

上面的矩阵的特征多项式是否有规律?特征根呢?最大特征根和最小特征根有无规律?
拓展到四阶、n阶矩阵有无规律?谢谢!
妙不可言,不明其妙,不着一字,各释其妙!

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-12-23 21:52:18
Last edited by hbghlyj at 2023-1-5 20:58:00实对称矩阵的特征多项式的所有复根都是实数。
Lemma 8.19. If $\lambda$ is an eigenvalue of a self-adjoint linear operator then $\lambda \in \mathbb{R}$.
Proof. Assume $w \neq 0$ and $T(w)=\lambda w$ for some $\lambda \in \mathbb{C}$. Then
\begin{aligned}
\lambda\langle w, w\rangle & =\langle w, \lambda w\rangle=\langle w, T(w)\rangle=\left\langle T^*(w), w\right\rangle \\
& =\langle T(w), w\rangle=\langle\lambda w, w\rangle=\bar{\lambda}\langle w, w\rangle .
\end{aligned}Hence, as $\langle w, w\rangle \neq 0, \lambda=\bar{\lambda}$ and $\lambda \in \mathbb{R}$.

手机版Mobile version|Leisure Math Forum

2025-4-21 18:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list