|
其妙
Posted at 2013-10-31 23:10:09
Last edited by hbghlyj at 2025-4-8 05:30:32解(1)令 $f(x)=e^x-1-x-\frac{1}{2} x^2, f^{\prime}(x)=e^x-1-x, f^{\prime \prime}(x)=e^x-1>0(x>0)$ , $f^{\prime}(x)$ 单调递增且 $f^{\prime}(0)=0$ ,所以 $f^{\prime}(x)>0$ ;从而 $f(x)$ 单调递增且 $f(0)=0$ ,所以 $f(x)>0$ ,得证 $x>0$ 时 $e^x>1+x+\frac{1}{2} x^2$ .
(2)由(1)知 $e^x=1+x+\frac{1}{2} x^2 e^y>1+x+\frac{1}{2} x^2, e^y>1, y>0$ ;
\[
e^y-e^x=\frac{\left(2-x^2\right) e^x-2-2 x}{x^2}, \text { 令 } g(x)=\left(2-x^2\right) e^x-2-2 x \text {, }
\]
$g^{\prime}(x)=\left(2-2 x-x^2\right) e^x-2, \quad g^{\prime \prime}(x)=\left(-4 x-x^2\right) e^x<0 \quad(x>0), \quad g^{\prime}(x)$ 单调递减且 $g^{\prime}(0)=0$ ,所以 $g^{\prime}(x)<0, g(x)$ 单调递减且 $g(0)=0$ ,所以 $g(x)<0$ ,从而 $e^y<e^x$ 得 $y<x$. 综上 $0<y<x$ . |
|