Forgot password?
 Create new account
View 4943|Reply 11

求两点电荷的电场线方程

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-11-2 16:18:08 |Read mode
Last edited by 青青子衿 at 2021-4-22 10:37:00电偶极子的电场线
638e7ab7c9ea15ceeed4d5b3b6003af33b87b28d.jpg
此图既有等势线,也有电场线,它们相互正交!!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-2 18:26:41
回复 1# 青青子衿
来了数学,又来物理,左右开弓啊?

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at 2013-11-2 23:22:22
先求电势的等值面方程,不妨设电偶极子的坐标 $q^+:(1,0)$, $q^-:(-1,0)$,平面上任一点 $M(x,y)$ 的电势为 $U$,则
\[U=\frac q{4\pi\veps}\left( \frac1{\sqrt{(x-1)^2+y^2}}-\frac1{\sqrt{(x+1)^2+y^2}} \right),\]设电场线方程为 $f(x,y)=0$,由于正交,有 $\nabla U\cdot \nabla f=0$,即
\[U_xf_x+U_yf_y=0,\]对于 $f$,因为 $\rmd y/\rmd x=-f_x/f_y$,故
\[U_x\rmd y=U_y\rmd x,\]即
\[\left( \frac{x+1}{\sqrt{((x+1)^2+y^2)^3}}-\frac{x-1}{\sqrt{((x-1)^2+y^2)^3}} \right)\rmd y=\left( \frac y{\sqrt{((x+1)^2+y^2)^3}}-\frac y{\sqrt{((x-1)^2+y^2)^3}} \right)\rmd x,\]$f$ 就是由这个微分方程确定,不知怎么解,估计解不出来。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-4 18:16:38
强中更有强中手!
让我们怀疑kk是不是北大(或其他校)的学生哦?

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at 2013-11-4 19:40:53
回复 4# 其妙

其实我也不知道有没有错,这些东东都没正式学过……

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2013-11-9 13:33:09
回复 2# 其妙
不是也很有趣吗?
数学与物理本身就是密不可分的,解决数学问题可以用物理方法,如:求曲率半径、求最速降线、极小曲面……,解决物理问题可以用数学方法,如:变力做功,求转动惯量……
牛顿最有名的书不也是《自然哲学的数学原理》吗!

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2018-1-25 12:47:40
学一点复变函数就简单了。或者参见流体力学中的势流理论。

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2020-9-3 10:30:52
《大学物理学习指导 概念解析与一题多解》
23424102245.png
40310231639.png
57239023331.png

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2021-4-21 23:03:16
Last edited by 青青子衿 at 2021-4-22 10:29:00电场线(the field lines)
\begin{align*}
\frac{q_{1}\left(x-R\right)}{\sqrt{\left(x-R\right)^{2}+y^{2}}}+\frac{q_{2}\left(x+R\right)}{\sqrt{\left(x+R\right)^{2}+y^{2}}}=C
\end{align*}
等势线(the equipotential lines)
\begin{align*}
\frac{q_{1}}{\sqrt{\left(x-R\right)^{2}+y^{2}}}+\frac{q_{2}}{\sqrt{\left(x+R\right)^{2}+y^{2}}}=C
\end{align*}
两个等量同种点电荷(即q1=q2时)的等势线为与两定点距离的倒数和为定值的曲线
【注】两个等量同种点电荷点电荷的等势线也被称为凯莱卵形线(Cayley ovals)
利用MMA绘制电场线与等势线
  1. R = 1;
  2. Manipulate[
  3. Show[
  4.   ContourPlot[
  5.    q1 (x - R)/Sqrt[(x - R)^2 + y^2] +
  6.     q2 (x + R)/Sqrt[(x + R)^2 + y^2], {x, -3, 3}, {y, -3, 3},
  7.    Contours -> 15, ContourShading -> None, ImageSize -> 500],
  8.   ContourPlot[
  9.    q1/Sqrt[(x - R)^2 + y^2] + q2/Sqrt[(x + R)^2 + y^2], {x, -3,
  10.     3}, {y, -3, 3}, Contours -> 15, ContourShading -> None,
  11.    ContourStyle -> Dashed]
  12.   ], {{q1, 0.5, "\!\(\*SubscriptBox[\(Q\), \(1\)]\)"}, -2, 2,
  13.   Appearance -> "Labeled"}, {{q2, -1,
  14.    "\!\(\*SubscriptBox[\(Q\), \(2\)]\)"}, -2, 2,
  15.   Appearance -> "Labeled"}]
Copy the Code

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at 2021-4-21 23:14:37
回复 9# 青青子衿

效果8错

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2022-3-29 04:02:22
Last edited by hbghlyj at 2024-12-19 23:04:003# kuing 的解法
$$\left( \frac{x+1}{\sqrt{((x+1)^2+y^2)^3}}-\frac{x-1}{\sqrt{((x-1)^2+y^2)^3}} \right)\rmd y=\left( \frac y{\sqrt{((x+1)^2+y^2)^3}}-\frac y{\sqrt{((x-1)^2+y^2)^3}} \right)\rmd x,$$

学习了8#的解法1以后,我们可以把这个微分方程解出来:
令$u=\frac{x+1}y,v=\frac{x-1}y$,得
$\mathrm{d}u=\frac{\mathrm{d}x}y-u \frac{\mathrm{d}y}y,\mathrm{d}v=\frac{\mathrm{d}x}y-v\frac{\mathrm{d}y}y$$$\left( \frac{u}{\sqrt{(u^2+1)^3}}-\frac{v}{\sqrt{(v^2+1)^3}} \right)\rmd y=\left( \frac1{\sqrt{(u^2+1)^3}}-\frac1{\sqrt{(v^2+1)^3}} \right)\rmd x$$$$\iff-\frac{\mathrm dx-u\mathrm dy}{\sqrt{(u^2+1)^3}}=\frac{\mathrm dx-v\mathrm dy}{\sqrt{(v^2+1)^3}}$$$$\iff-\frac{\mathrm du}{\sqrt{(u^2+1)^3}}=\frac{\mathrm dv}{\sqrt{(v^2+1)^3}}$$$$\iff\int-\frac{\mathrm du}{\sqrt{(u^2+1)^3}}=\int\frac{\mathrm dv}{\sqrt{(v^2+1)^3}}$$$$\iff-\frac{u}{\sqrt{u^2+1}}+C=\frac v{\sqrt{v^2+1}}$$$$\iff\frac{x-1}{\sqrt{\left(x-1\right)^{2}+y^{2}}}+\frac{x+1}{\sqrt{\left(x+1\right)^{2}+y^{2}}}=C$$

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2024-12-20 07:03:11
demonstrations.wolfram.com/LinesOfForceForTwoPointCharges 写道,代换$\cases{\xi=\left(r_1+r_2\right) / R\\\eta=\left(r_1-r_2\right) / R}$可得到简单的方程。比笛卡尔坐标下的方程形式更简单吗
\[\phi(\xi, \eta)=\frac{q_1}{2 R(\xi+\eta)}+\frac{q_2}{2 R(\xi-\eta)}\]
the equation
\[
\nabla \phi(\xi, \eta) \cdot \nabla \psi(\xi, \eta)=0
\]
The solution
\[
\psi(\xi, \eta)=\frac{1}{\xi^2-\eta^2}\left[q_1\left(\xi-\eta+\xi^2 \eta-\xi \eta^2\right)+q_2\left(-\eta+\xi^2 \eta+-\xi+\xi \eta^2\right)\right]
\]

手机版Mobile version|Leisure Math Forum

2025-4-20 11:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list