Forgot password?
 Create new account
View 2933|Reply 8

[数列] 数列不等式一题

[Copy link]

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

hongxian Posted at 2013-7-21 19:51:03 |Read mode
已知数列:\(a_0,a_1,\cdots,a_n\)满足\(a_0=\dfrac12,a_{k+1}=a_k+\dfrac1na_k^2\)  \((k=0,1,\cdots,n-1)\)
求证:\(1-\dfrac1n<a_n<1\)

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-7-21 20:46:50
似曾相识的说
而且以前见过的题好像是用函数零点来导出那个递推的,翻翻贴子先

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

 Author| hongxian Posted at 2013-7-21 20:50:46
回复 2# kuing

不能直接数归,怕是要加强,只是怎样加强不太会了!

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-7-21 20:51:16
我记错了……

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-7-21 23:34:38
右边比较简单,先证了它。显然 $a_n$ 递增,故
\[a_{k+1}=a_k+\frac1na_k^2<a_k+\frac1na_ka_{k+1},\]
得到
\[\frac1{a_k}<\frac1{a_{k+1}}+\frac1n,\]
让 $k$ 取 $0$ 到 $n-1$ 求和得
\[\frac1{a_0}<\frac1{a_n}+1,\]
即得
\[a_n<1.\]

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

 Author| hongxian Posted at 2013-7-22 19:22:45
Last edited by hongxian at 2013-7-22 21:54:00回复 5# kuing


    沿这个路走下去应该可以了
\(\because a_{k+1}=a_k+\dfrac1na_k^2\)
\(\therefore \dfrac{1}{a_{k+1}}=\dfrac{1}{a_k}-\dfrac{1}{a_k+n}\)
\(\therefore \dfrac{1}{a_{k+1}}-\dfrac{1}{a_k}=-\dfrac{1}{a_k+n}<\dfrac{-1}{n+1}\)
\(\therefore \dfrac{1}{a_n}=\left(\dfrac{1}{a_n}-\dfrac{1}{a_{n-1}}\right)+\left(\dfrac{1}{a_{n-1}}-\dfrac{1}{a_{n-2}}\right)+\cdots+\left(\dfrac{1}{a_1}-\dfrac{1}{a_0}\right)+\dfrac{1}{a_0}\)
\(\therefore\dfrac{1}{a_n}<\dfrac{-n}{n+1}+2=\dfrac{n+2}{n+1}\)
\(a_n>\dfrac{n+1}{n+2}=1-\dfrac{1}{n+2}>1-\dfrac1n\)

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-7-22 20:13:28
回复 6# hongxian

嗯应该可以了,好像还强了些

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-7-23 21:17:42
老题?

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-11-18 14:19:02
Last edited by realnumber at 2013-11-18 14:26:00回复 8# 其妙
应该很老,以前在k12数学论坛 听网友说是“1980年匈牙利等四国联合竞赛”,6楼的结果似乎比那网友转述的还要好.
可能是这篇,我没法下
cnki.com.cn/Article/CJFDTotal-ZXJI198202012.htm

手机版Mobile version|Leisure Math Forum

2025-4-21 18:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list