Forgot password?
 Create new account
View 1654|Reply 2

积化和差的推广

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-11-9 10:46:51 |Read mode
19.gif
还能做进一步的推广吗?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-11-9 11:25:01
回复 1# 青青子衿


这个挺有意思

首先看简单的
\[\cos(x_1)\cos(x_2)=\frac{1}{2}[\cos(x_1+x_2)+\cos(x_1-x_2)]=\frac{1}{4}[\cos(x_1+x_2)+\cos(x_1-x_2)+\cos(-x_1-x_2)+\cos(x_2-x_1)]\]
所以不妨猜想
\[\prod_{i=1}^n\cos(x_i)=\frac{1}{2^n}\sum_{C}\cos(\sum_{i=1}^nc_ix_i)\]
其中$C=\{c_1,c_2,...,c_n\},c_i\in\{-1,1\}, i\in[1,n]$
这个对于$n=2$时已经成立了,$n=3$时楼主也验证成立了,下面数学归纳就好
假设上式在$n=k>2$时成立,当$n=k+1$时
\[\prod_{i=1}^{k+1}\cos(x_i)=\frac{1}{2^k}\sum_{C}\cos(\sum_{i=1}^kc_ix_i)\cos(x_{k+1})=\frac{1}{2^{k+1}}\sum_{C}[\cos(\sum_{i=1}^kc_ix_i+x_{k+1})+\cos(\sum_{i=1}^kc_ix_i-x_{k+1})]\]
\[=\frac{1}{2^{k+1}}\sum_{C}\cos(\sum_{i=1}^{k+1}c_ix_i)\]
于是得证

其实$\prod_{i=1}^n\cos(x_i)$就是对所有$x_i$加减组合,求余弦值后再取算术平均值...
正弦的类似,可以做个$x=\frac{\pi}{2}-y$,变成余弦然后套进上面

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-9 18:13:48
牛笔!都是牛人啊!

手机版Mobile version|Leisure Math Forum

2025-4-21 14:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list