Forgot password?
 Register account
View 1793|Reply 2

积化和差的推广

[Copy link]

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2013-11-9 10:46 |Read mode
Last edited by hbghlyj 2025-5-5 18:03\begin{aligned}
& \cos (\alpha) \cos (\beta) \cos (y))  \\
& =\frac{1}{4} \cos (\alpha-\beta-\gamma)+\frac{1}{4} \cos (\alpha-\beta+\gamma)+\frac{1}{4} \cos (\alpha+\beta-\gamma)+\frac{1}{4} \cos (\alpha+\beta+\gamma) \\
& \sin (\alpha) \sin (\beta)  \sin (x))  \\
& =\frac{1}{4} \sin (\alpha-\beta+\gamma)-\frac{1}{4} \sin (\alpha-\beta-\gamma)-\frac{1}{4} \sin (\alpha+\beta+\gamma)+\frac{1}{4} \sin (\alpha+\beta-\gamma)
\end{aligned}
还能做进一步的推广吗?

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-11-9 11:25
回复 1# 青青子衿


这个挺有意思

首先看简单的
\[\cos(x_1)\cos(x_2)=\frac{1}{2}[\cos(x_1+x_2)+\cos(x_1-x_2)]=\frac{1}{4}[\cos(x_1+x_2)+\cos(x_1-x_2)+\cos(-x_1-x_2)+\cos(x_2-x_1)]\]
所以不妨猜想
\[\prod_{i=1}^n\cos(x_i)=\frac{1}{2^n}\sum_{C}\cos(\sum_{i=1}^nc_ix_i)\]
其中$C=\{c_1,c_2,...,c_n\},c_i\in\{-1,1\}, i\in[1,n]$
这个对于$n=2$时已经成立了,$n=3$时楼主也验证成立了,下面数学归纳就好
假设上式在$n=k>2$时成立,当$n=k+1$时
\[\prod_{i=1}^{k+1}\cos(x_i)=\frac{1}{2^k}\sum_{C}\cos(\sum_{i=1}^kc_ix_i)\cos(x_{k+1})=\frac{1}{2^{k+1}}\sum_{C}[\cos(\sum_{i=1}^kc_ix_i+x_{k+1})+\cos(\sum_{i=1}^kc_ix_i-x_{k+1})]\]
\[=\frac{1}{2^{k+1}}\sum_{C}\cos(\sum_{i=1}^{k+1}c_ix_i)\]
于是得证

其实$\prod_{i=1}^n\cos(x_i)$就是对所有$x_i$加减组合,求余弦值后再取算术平均值...
正弦的类似,可以做个$x=\frac{\pi}{2}-y$,变成余弦然后套进上面

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-9 18:13
牛笔!都是牛人啊!

Mobile version|Discuz Math Forum

2025-6-5 18:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit